
Master Thesis

Detecting unusual user profiles
with outlier detection techniques

by

Martijn Onderwater

September 2010

c© 2010 Martijn Onderwater

All Rights Reserved

Master Thesis

Detecting unusual user profiles
with outlier detection techniques

Author: Supervisors:
Drs. Martijn Onderwater Dr. Wojtek Kowalczyk

Dr. Fetsje Moné-Bijma

September 2010

VU University Amsterdam
Faculty of Sciences
De Boelelaan 1081a

1081 HV Amsterdam
The Netherlands

iv

Preface

The Master program Business Mathematics & Informatics at the VU
University Amsterdam is concluded by an internship. My internship took
place at the Fraud Detection Expertise Centre, a part of the VU
University. This thesis shows the results that were obtained during the six
months of the project.

I would like to thank my supervisor, Wojtek Kowalczyk, for his continuous
support and guidance. His practical experience and keen thinking were an
inspiration, not only for finishing this thesis, but also for me personally.

Finally, special thanks go to my colleagues at the Fraud Detection
Expertise Centre, Rob Konijn and Vytautas Savickas, for the long
discussions and useful feedback. Thanks also to Fetsje Moné-Bijma for
reading the ‘nearly final’ version of this thesis and for providing those ever
useful fresh-eyes-at-the-last-minute comments.

Martijn Onderwater,

Amsterdam, the Netherlands,

September 8, 2010.

v

vi

Management Summary

Every year, companies worldwide lose billions of euros to fraud. Detecting
fraud is therefore a key activity for many companies. But with the
increasing use of computer technology and the continuous growth of
companies, the amount of available data is huge. Finding fraud in such
volumes of data is a challenging and time-consuming task. Automated
systems are needed for these tasks.

An important issue in automated fraud detection is the personal nature of
user behaviour. What is normal for one person may be unusual for
another. We will approach this situation by creating a so-called profile for
each user. This profile is a vector of numbers that together capture
important aspects of the user’s behaviour. Profiles are learned from the
data, thereby eliminating the need for defining ‘normal’ behaviour and
allowing for a high level of personalization.

Using these profiles, we can, e.g., compare profiles and look for users with
unusual behaviour. Another important advantage of profiles is that we can
compare individual transactions to the user’s profile in order to determine
if it conforms to normal behaviour. If the profiles are small enough to be
kept in memory, transactions can be checked in real-time. Transactions can
also be used to update a profile, hence making profiles evolve over time
and allowing them to capture new types of fraud.

In this thesis, we investigate how to create such profiles and present some
techniques for comparing them. We also discuss outlier detection
techniques, which can be used to find users with unusual behaviour.
Dimensionality reduction techniques are presented as a method for
reducing the size of a profile, which may be useful with respect to real-time
processing. Special attention is paid to their effect on outliers. Throughout
the thesis, experiments will be done on a practical dataset.

Our main conclusion is that there is a wide variety of methods available for
user profiling, outlier detection and dimensionality reduction. They can be
applied in many practical situations, although the optimal choice depends
highly on the application domain.

vii

viii

Contents

Preface v

Management Summary vii

1 Introduction 1
1.1 Challenges . 2
1.2 Our approach . 3
1.3 Outline of this thesis . 3

2 The Netflix Dataset 5
2.1 Netflix & The Netflix Prize 5
2.2 Description of the dataset . 6
2.3 Creation of the dataset . 7
2.4 Exploratory Data Analysis . 9

2.4.1 Average rating per user 9
2.4.2 Number of ratings . 10
2.4.3 Number of ratings per day 11
2.4.4 Time between first and last rating 13
2.4.5 Good and bad movies 13
2.4.6 Discussion . 15

2.5 Further reading . 15

3 User profiling 17
3.1 Profile construction . 17

3.1.1 Aggregates and basic statistics 18
3.1.2 Histograms . 18
3.1.3 Modelling probability density functions 19
3.1.4 Mixture models applied to user profiling 23
3.1.5 Netflix: Simon Funk’s idea 25

3.2 Comparing profiles . 27
3.2.1 Distance measures . 27
3.2.2 Difference between probability distributions 28
3.2.3 Custom similarity measures 30

3.3 Significance of the difference 31

ix

CONTENTS

3.4 Discussion . 31
3.5 Further reading . 31

4 Outlier Detection 33
4.1 Statistics-based techniques . 33

4.1.1 One dimensional data 33
4.1.2 Robust Least Squares 34

4.2 Distance-based techniques . 35
4.2.1 Onion Peeling . 35
4.2.2 Peeling with standardized data 35
4.2.3 Peeling with Mahalanobis distance 36
4.2.4 Local Reconstruction Weights 36

4.3 Experiments . 36
4.4 Discussion . 37
4.5 Further reading . 38

5 Dimensionality reduction techniques 41
5.1 Principal Component Analysis 42
5.2 Multidimensional Scaling . 43
5.3 AutoEncoders . 44
5.4 Locally Linear Embedding . 46
5.5 t-Stochastic Neighbourhood Embedding 47
5.6 Discussion . 48
5.7 Further reading . 49

6 Detecting change in behaviour 51
6.1 Histogram profiles . 51
6.2 Funk profiles . 55
6.3 Further reading . 56

7 Conclusions and recommendations 59
7.1 Conclusions . 59
7.2 Recommendations . 60

A Visualising good and bad movies 63

B Matlab: odToolbox 67
B.1 Available scripts . 67
B.2 Demo script . 68

Bibliography 75

x

Chapter 1

Introduction

Outlier detection refers to the problem of finding patterns in data that do
not conform to expected behaviour. Depending on the application domain,
these non-conforming patterns can have various names, e.g., outliers,
anomalies, exceptions, discordant observations, novelties or noise. The
importance of outlier detection methods is found in the fact that the
results can lead to actionable (and often critical) information.

A good example of this is fraud detection, where an outlier can indicate,
e.g., a suspicious credit card transaction that needs to be investigated. The
amount of money involved in fraud is enormous. Sudjianto et al. (2010)
estimate the amount of credit card fraud in the US at $1 billion per year
and $10 billion worldwide. In the United Kingdom The UK Card
Association and Financial Fraud Action UK publish a yearly report on
plastic card fraud. They report an amount of £440 million for the year
2009 (UKCards (2010)). These statistics are only about card fraud, but
there are many other areas where fraud exists, such as:

• Health care. Health care providers declaring costs for services that
were never provided.

• Public transport. Copying of payment cards used to pay for public
transport.

• Insider trading. Certain transactions on a financial market may be
suspicious because they suggest insider trading.

• Social welfare. People receiving benefits which they are not entitled
to.

• Telecommunications. Detecting cloned phones (superimposition
fraud).

1

CHAPTER 1. INTRODUCTION

Together these industries face massive amounts of fraud, a part of which
can be detected by outlier detection methods. Besides fraud detection,
there are many other areas where outlier detection methods (can) play a
role:

• Intrusion detection. Detecting unauthorized access to computer
networks.

• Loan application processing. Identifying potentially problematic
customers.

• Motion segmentation. Detecting image features moving
independently from the background.

• Environmental monitoring. Predicting the likelihood of floods, fire
or draught based on environmental data.

More examples can be found in Hodge and Austin (2004) and Zhang et al.
(2007).

1.1 Challenges

At an abstract level, an outlier is defined as a pattern that does not
conform to normal behaviour. A straightforward outlier detection
approach, therefore, is to define a region representing normal behaviour
and declare any observation in the data that does not belong to this region
as an outlier. But several factors make this difficult (from Chandola et al.
(2009)):

• Defining a normal region which encompasses every possible normal
behaviour is very difficult. Especially since ‘normal’ is something
that depends very much on the user.

• Criminals continually adapt their behaviour to fraud detection
techniques, trying to make fraudulent transactions appear normal
again. So both fraud and the detection techniques change over time
in response to each other.

• Outlier detection techniques are often partly domain-specific, making
it difficult to port existing techniques to other domains.

• Existing outlier detection techniques are often aimed at finding
outliers in one big dataset. In the context of fraud, we are more
interested in identifying outliers per user, for whom fewer records are
available. This makes applying conventional techniques difficult.

2

CHAPTER 1. INTRODUCTION

• Labelled data is often sparse, making it difficult to use classic
supervised classifiers.

• The data often contains some noise, such as typos. This noise usually
appears among the outliers.

• The amount of data available is usually quite large and decisions
about being an outlier or not need to be taken in real-time. This
happens with, e.g., credit card transactions, which need to be
blocked when they appear suspicious.

1.2 Our approach

We will approach the situation by creating a so-called profile for each user.
This profile is a vector of numbers that together capture important aspects
of the user’s behaviour. Profiles are learned from the data, thereby
eliminating the need for defining ‘normal’ behaviour. By comparing profiles
we can find users with unusual behaviour.

Such profiles are very relevant in the context of fraud detection. An
incoming transaction of a user can be compared to the user’s profile in
order to determine if it conforms to normal behaviour. If the profiles are
small enough to be kept in memory, transactions can be checked in
real-time. Transactions can also be used to update a profile, hence making
profiles evolve over time and allowing them to capture new types of fraud.

The dataset that we use is large and unlabelled, as is often the case in
practice. With respect to outliers, we will limit ourselves to detecting
them. We will not give a practical explanation for why they are outliers,
because that task is very domain specific and we lack the domain
knowledge and expertise. As a consequence, we also will not judge whether
an outlier is noise.

It is our intention to investigate techniques for user profiling and outlier
detection and to apply these techniques to detect change in user
behaviour. We will also provide a collection of Matlab tools for future use
within the Fraud Detection Expertise Centre.

1.3 Outline of this thesis

The next chapter of this thesis introduces the dataset that we will use and
does some exploratory data analysis to get a feel for the data. Chapter 3
shows how profiles can be constructed from this data and compared. In
chapter 4 we investigate existing outlier detection methods and apply them

3

CHAPTER 1. INTRODUCTION

to some profiles. Chapter 5 contains experiments with several
dimensionality reduction techniques in order to find out if (and how) useful
low dimensional representations of the data are. Then in chapter 6 we
apply some of the outlier detection techniques from chapter 4 to detect
changes in user behaviour over time. We finish the thesis with an overview
of conclusions and some recommendations for further research.

All our experiments will be done in Matlab, with the occasional help of
Java and C++ (via Matlab’s external interfaces), on a computer with two
quad-core processors and 16GB of internal memory. Not all the computing
power of that machine is necessary for all experiments, but a dual-core
machine with at least 4GB of memory is advisable for the dataset that we
use.

4

Chapter 2

The Netflix Dataset

2.1 Netflix & The Netflix Prize

The dataset that we will use is obtained from Netflix. They provide a
monthly flat-fee service for the rental of DVD and Blu-ray movies. A user
creates an ordered list on the website of Netflix, called a rental queue, of
movies to rent. The movies are delivered individually via the United States
Postal Service. The user can keep the rented movie as long as desired, but
there is a limit on the number of movies (determined by subscription level)
that each user can have on loan simultaneously. To rent a new movie, the
user must mail the previous one back to Netflix in a prepaid mailing
envelope. Upon receipt of the disc, Netflix ships the next available disc in
the user’s rental queue. After watching the movie, the user can give it a
rating from one to five on the Netflix website.

Netflix has a recommender system (Cinematch) that uses these ratings to
suggest other movies that may be interesting for the user. In October 2006,
Netflix started a competition to see if and how the predictions of
Cinematch could be improved. A dataset of 100.480.507 ratings that
480.189 users gave to 17.770 movies was made publically available and the
research community was invited to join the competition. The grand prize
was $1.000.000 for the first team to improve Cinematch by 10%. Also, a
yearly progress prize of $50.000 was awarded to the team that made the
most progress.

In September 2009, team BellKor’s Pragmatic Chaos, a cooperation of
people with previous success in the competition, won the competition and
received the grand prize. They narrowly beat team The Ensemble, who
also managed to improve Cinematch by 10%, but performed slightly worse
on a test set.

5

CHAPTER 2. THE NETFLIX DATASET

There have been some complaints and concerns about the competition.
Although the datasets were changed to preserve customer privacy, the
competition has been criticized by privacy advocates. In 2007 two
researchers from the University of Texas (Narayanan and Shmatikov
(2006)) were able to identify individual users by matching the datasets
with film ratings on the Internet Movie Database (www.imdb.com). In
December 2009, an anonymous Netflix user sued Netflix, alleging that
Netflix had violated U.S. fair trade laws and the Video Privacy Protection
Act by releasing the datasets. Due to these privacy concerns, Netflix
decided not to pursue a second competition. Also, the dataset is currently
not available to the public any more.

The announcement by Netflix to cancel the second competition can be
found at http://tiny.cc/br3tx. A response by the researchers from the
University of Texas is also online, see
http://33bits.org/2010/03/15/open-letter-to-netflix/. More
references can be found in section 2.5.

2.2 Description of the dataset

The dataset contains 100.480.507 pairs of <userId, movieId, rating,

date>. For users we have only their ID, but for movies we also have a title
and the year of release. We use this dataset1because it is close to the
challenges described in section 1.1 and our approach to the problem. More
specific:

• The total dataset, which is about 2GB in size, gives us
computational problems similar to those encountered in practice.

• The dataset contains ratings, so with respect to predicting ratings
the dataset is labelled. But we can also treat the ratings as another
attribute in the dataset. This makes the dataset unlabelled, which is
again similar to practical situations.

• There are ratings from 480.189 users, enough for defining user
profiles and looking for outliers among them.

• There were 51051 competitors in 41305 teams participating in the
Netflix Prize competition. During the three years of the competition,

1Initially, we intended to use data from a customer of the Fraud Detection Expertise
Centre. Unfortunately, for bureaucratic reasons, permission for using the data was never
given. As an alternative, we decided to use the Netflix data, for the reasons outlined in
this section.

6

www.imdb.com
http://tiny.cc/br3tx
http://33bits.org/2010/03/15/open-letter-to-netflix/

CHAPTER 2. THE NETFLIX DATASET

the ideas and solutions of participants were actively discussed on,
e.g., the Netflix Prize forum. Because of this, the dataset is well
understood. This forum can be found online at
http://www.netflixprize.com/community.

• There are only a few attributes in the dataset, so we do not need to
spend time understanding attributes, identifying important
attributes and other such considerations. This allows us to focus on
the problem.

2.3 Creation of the dataset

When the competition started, Netflix made four datasets available to the
public:

• Training set. This is the dataset that participants of the competition
used to train their models.

• Qualifying set. The dataset containing <userId, movieId, date>

pairs for which the ratings had to be predicted.

• Probe set. This dataset is a subset of the training set and could be
used by teams for testing their models.

• Quiz set. A subset of the qualifying set. Submissions were judged on
this subset.

• Test set. Another subset of the qualifying set, used to rank
submissions that had equal results on the quiz set.

The dataset that we described above is the trainingset. The way in which
these sets were sampled from Netflix’ systems was described in the rules
and in a later post on the forum. Below is a quote from the forum (see
http://www.netflixprize.com/community/viewtopic.php?id=332 for
the full post).

We first formed the complete Prize dataset (the training set,
which contains the probe subset, and the qualifying set, which
comprises the quiz and test subsets) by randomly selecting a
subset of all our users who provided at least 20 ratings between
October, 1998 and December, 2005 (but see below). We
retrieved all their ratings. We then applied a perturbation
technique to the ratings in that dataset. The perturbation
technique was designed not to change the overall statistics of
the Prize dataset. However, we will not describe the

7

http://www.netflixprize.com/community
http://www.netflixprize.com/community/viewtopic.php?id=332

CHAPTER 2. THE NETFLIX DATASET

perturbation technique here since that would defeat its purpose
of protecting some information about the Netflix customer base.

As described in the Rules, we formed the qualifying set by
selecting, for each of the randomly selected users in the
complete Prize dataset, a set of their most recent ratings. These
ratings were randomly assigned, with equal probability, to three
subsets: quiz, test, and probe. Selecting the most recent ratings
reflects our business goal of predicting future ratings based on
past ratings. The training set was created from all the
remaining (past) ratings and the probe subset; the qualifying set
was created from the quiz and test subsets. The training set
ratings were released to you; the qualifying ratings were
withheld and form the basis of the Contest scoring system.

Based on considerations such as the average number of ratings
per user and the target size of the complete Prize dataset, we
selected the user’s 9 most recent ratings to assign to the
subsets. However, if the user had fewer than 18 ratings (because
of perturbation), we selected only the most recent one-half of
their ratings to assign to the subsets.

There was a follow-up post with two additional remarks about this process:

First, we stated that the ratings were sampled between October,
1998 and December, 2005, but the earliest recorded date is 11
November 1999. The code to pull the data was written to simply
ensure the rating date was before 1 January 2006; we assumed
without verifying that ratings were collected from the start of
the Cinematch project in October 1998. In fact, the earliest
recordings of customer ratings in production date from 11
November 1999.

Second, we reported that we included users that had only
provided at least 20 ratings. Unfortunately a bug in the code
didn’t require the ratings to have made before 1 January 2006.
Thus the included users made at least 20 ratings through 9
August 2006, even if all ratings made after 1 January 2006 are
not included.

This last remark is phrased somewhat cryptic. We look at the number of
ratings per user in section 2.4.2, so the situation with respect to the
training set will become clear there.

See also the section called The Prize Structure in the rules of the
competition at http://www.netflixprize.com/rules.

8

http://www.netflixprize.com/rules

CHAPTER 2. THE NETFLIX DATASET

2.4 Exploratory Data Analysis

Before we start working with, e.g., user profiling and outlier detection, we
do some exploratory data analysis on the dataset. This helps us to get a
feel for the data and see if certain aspects of it conform to our
expectations. The analysis is not a fixed list of steps to take, but rather a
creative process where common sense and some simple statistics are
combined. In practice, the knowledge obtained from such experiments is
often important when interpreting results later on in the project. It also
raises the level of domain knowledge of the (often externally hired) data
analyst early on in the project.

The following sections contain a selection of the results of our exploratory
data analysis.

2.4.1 Average rating per user

It seems natural to assume that most users will watch more movies that
they like than movies that they do not like. Hence, the average rating
should be just above three for most users. The left of figure 2.1 shows a
histogram of these averages. As can be seen, most users do indeed have an
average rating of just above three. There are some users that have a very
low or high average and we suspect those users have only rated a few
movies. If we leave such users out and recalculate the histogram for users
that have at least, say, 100 ratings, we get the histogram that is shown in
the right part of figure 2.1.

Figure 2.1: Left: histogram of the average rating per user of all 480189 users.
Right: histogram of the average rating per user of the (234909) users that
rated more than 100 movies.

9

CHAPTER 2. THE NETFLIX DATASET

Note that there are still users with very low and very high rating. An
example of such a user is user 2439493, who rated 16565 movies. A
histogram of this user’s ratings is shown in figure 2.2. Over 90% of these
ratings were a one.

1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

16000
Histogram of the ratings of user 2439493

Rating

C
ou

nt
s

Figure 2.2: Histogram of ratings of user 2439493.

2.4.2 Number of ratings

We already saw that there are some users who have only a few ratings.
Figure 2.3 shows the number of ratings done by each user. For clarity, they
are sorted by the amount of ratings.

Figure 2.3: Number of ratings per user (sorted by number of ratings).

10

CHAPTER 2. THE NETFLIX DATASET

The plot shows a sharp peak on the left, indicating that there are only a
few users with a large number of ratings (compared to the others). The
plot on the right zooms in on the peak, showing that there are only about
5 users with more than 10000 ratings. A closer examination of the data
tells us that there are 1212 users with more than 2000 ratings and 16419
users with less than 10 ratings.

Another plot that gives some insight into the activity of users can be
created by plotting the cumulative sum of the data in figure 2.3 and
scaling it to make the total sum equal to one. The result is in figure 2.4,
from which it can be seen directly that 70% of the ratings is done by
approximately the 120000 most active users.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative and scaled #ratings (70 % of ratings done by top 118532 users)

Users

C
um

ul
at

iv
e

sc
al

ed
 c

ou
nt

s

Figure 2.4: Number of ratings per user, sorted by number of ratings, summed
cumulatively and normalized to one.

2.4.3 Number of ratings per day

The Netflix data contains ratings from 11 November 1999 to 31 December
2005, so roughly six years. At the beginning of this period, Netflix was not
a big company and use of the internet was only just getting popular. So
the number or rating should be small there. But after that, the number of

11

CHAPTER 2. THE NETFLIX DATASET

ratings should grow steadily. It would be interesting to see what happened
in, say, the last two years. Is Netflix’ popularity still growing? Figure 2.5
shows the number of ratings per day.

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8
x 10

5 #ratings per day, from 11−Nov−1999 to 31−Dec−2005.

Time

ra

tin
gs

Figure 2.5: Number of ratings per day.

The number of ratings per day is indeed low in the beginning and growing
as time goes on. But near the end of the period it seems to drop a bit.
Also, there is a sharp peak, which turns out to be the 29 January 2005.
Both facts could be caused by the fact that the dataset is only a sample of
all the data in Netflix’ system. The sampling was not done with the
number of ratings per day in mind (see section 2.3). For the peak on 29
January 2005, there may be some other causes. For instance:

• Automatic script. It may have been that somebody wrote an
automatic script to do a lot of ratings. Our analysis does not show
any evidence of this. The ratings on 29 January 2005 were done by a
multitude of users. Also, the ratings were distributed similar to the
histograms in figure 2.1, so they appear to be valid ratings.

• System crash. Perhaps a system crashed at Netflix somewhere before
29 January 2005 and they used this day to reinsert some lost data.
But this would mean that there should be a decrease of the number
of ratings in the days before 29 January 2005. A closer look at the
data does not show such a decrease.

• Holiday. 29 January 2005 is not a special day like Christmas or
Thanksgiving, where we can expect an increase in number of ratings.

12

CHAPTER 2. THE NETFLIX DATASET

So all in all we are confident that the ratings on 29 January 2005 are valid.
There is also a discussion on the Netflix forum about the ratings of this
day, see the topic at
http://www.netflixprize.com/community/viewtopic.php?id=141.

2.4.4 Time between first and last rating

It seems natural to interpret the time between the first and last rating as
the membership period of a user. Figure 2.6 shows a histogram of how
many users have been a member for how many months. Its shape is as
expected, with mainly recent members and some long-time members. We
also investigated whether there was a correlation between the number of
ratings of a user and the length of its membership, but found no significant
relation. This is probably the result of the perturbation method. Because
of this, we should probably not interpret the time between the first and
last rating as the membership period of a user.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3
x 10

4 Histogram of #user vs #months of membership.

Months

#U
se

rs

Figure 2.6: Histogram of the membership time (in months) of the users.

2.4.5 Good and bad movies

It is interesting to investigate whether our intuition of a ‘good’ and ‘bad’
movie is reflected in the data. For instance, we expect that movies with a
large number of ratings and a large average are good movies. Similarly,
bad movies are expected to have a low average and only a few ratings.

13

http://www.netflixprize.com/community/viewtopic.php?id=141

CHAPTER 2. THE NETFLIX DATASET

Applying this to the Netflix data results in the movies in tables 2.1 and
2.2. The good movies are found by looking for movies with more than 5000
ratings and selecting the ones with the highest average rating. The titles in
table 2.1 are recognizable as known blockbusters or very popular TV-series.

Pos. Title Average # ratings

1. LOTR2: The Return of the King (2003) 4.7233 73335
2. LOTR: The Fellowship of the Ring (2001) 4.7166 73422
3. LOTR: The Two Towers: (2002) 4.7026 74912
4. Lost: Season 1 (2004) 4.6710 7249
5. The Shawshank Redemption (1994) 4.5934 139660
6. Arrested Development: Season 2 (2004) 4.5824 6621
7. The Simpsons: Season 6 (1994) 4.5813 8426
8. Star Wars: V: The Empire Strikes Back (1980) 4.5437 92470
9. The Simpsons: Season 5 (1993) 4.5426 17292
10. The Sopranos: Season 5 (2004) 4.5343 21043

Table 2.1: Good movies.

The bad movies are found by looking for movies with the lowest average
rating. Table 2.2 shows very few known titles, although Zodiac Killer
(2004) appears on the IMDB bottom 100 list at position 30. See
http://www.imdb.com/chart/bottom. Also, the makers of The Worst
Horror Movie Ever Made (2005) came very close to reaching their target.

Pos. Title Average # ratings

1. Avia Vampire Hunter (2005) 1.2879 132
2. Zodiac Killer (2004) 1.3460 289
3. Alone in a Haunted House (2004) 1.3756 205
4. Vampire Assassins (2005) 1.3968 247
5. Absolution (2003) 1.4000 125
6. The Worst Horror Movie Ever Made (2005) 1.4000 165
7. Ax ’Em (2002) 1.4222 90
8. Dark Harvest 2: The Maize (2004) 1.4524 84
9. Half-Caste (2004) 1.4874 119
10. The Horror Within (2005) 1.4962 133

Table 2.2: Bad movies.

Note that table 2.2 contains quite recent movies that have not all had the
time to reach their ‘long-term’ average (the Netflix data only contains

2LOTR=Lord of the Rings

14

http://www.imdb.com/chart/bottom

CHAPTER 2. THE NETFLIX DATASET

ratings from the years 2000 to 2005). If we define bad movies as those with
low average, but with a decent amount of ratings, then we expect to see
more recognizable bad titles. Table 2.3 shows movies with the lowest
average among those with at least 1000 ratings. The titles are indeed more
recognizable.

Pos. Title Average # ratings

1. Shanghai Surprise (1986) 1.7626 1192
2. Sopranos Unauthorized: Shooting Sites 1.9375 1104

Uncovered (2002)
3. Gigli (2003) 1.9460 9958
4. House of the Dead (2003) 1.9628 5589
5. Glitter (2001) 1.9665 2596
6. National Lampoon’s Christmas 1.9712 1387

Vacation 2 (2003)
7. Stop! Or My Mom Will Shoot (1992) 1.9747 2215
8. Druids (2001) 2.0185 1297
9. Wendigo (2002) 2.0619 1066
10. The Brown Bunny (2004) 2.0684 3814

Table 2.3: Bad movies with at least 1000 ratings.

2.4.6 Discussion

Based on the analysis we can say that the data does contain some outliers,
both in terms of the number of ratings and the distribution of ratings. So
we will expect some results from the work on user profiling and outlier
detection in the next few chapters. The data does not seem to contain any
strange phenomena that can somehow cause us problems later on.

2.5 Further reading

More information on Netflix and the Netflix Prize can be found the
following webpages:

• Netflix’ homepage, http://www.netflix.com.

• Homepage of the Netflix Prize, http://www.netflixprize.com/. It
also has a forum where the competition was discussed by the
community. The forum is read-only since the cancellation of the
second Netflix Prize.

• The Wikipedia page for Netflix
(http://en.wikipedia.org/wiki/Netflix) and the Netflix Prize
(http://en.wikipedia.org/wiki/Netflix_Prize). These are the
main sources for the information in section 2.1.

15

http://www.netflix.com
http://www.netflixprize.com/
http://en.wikipedia.org/wiki/Netflix
http://en.wikipedia.org/wiki/Netflix_Prize

CHAPTER 2. THE NETFLIX DATASET

There have been many papers on the Netflix Prize, see, e.g., Bell and
Koren (2007a), Bell and Koren (2007b), Takacs et al. (2007), Paterek
(2007) and Bennett and Lanning (2007). Also, the four top competitors
presented their techniques at the 2009 KDD conference. See www.kdd.org

for the papers.

An alternative to the Netflix dataset is the MovieLens dataset. Both are
similar in nature, but the MovieLens dataset contains fewer records and
more information on users and movies. It can be downloaded from
www.grouplens.org.

With respect to recommender systems, papers by Mobasher et al. (2007)
and Williams et al. (2007) are worth mentioning. They investigate
methods of attack on recommender systems and techniques for preventing
such attacks. The histogram of user 2439493 in figure 2.2 is an example of
such an attack. Over 90% of his/her 16565 ratings were a one, which is
highly suspicious.

16

www.kdd.org
www.grouplens.org

Chapter 3

User profiling

We would like to construct profiles that can capture the ‘behaviour’ of a
user from his transactions in the past. That way, we can monitor the
change in these profiles and raise a warning when the change is significant.
The most common interpretation is that a profile consists of elements,
where each element captures one aspect of the user’s behaviour. Typically,
an element is a number or a group of numbers. In the context of credit
card transactions, elements of a profile could be, e.g.,

• the daily number of transactions;

• the average amount of money spent per day/week/month;

• a histogram (or quantiles) describing the distribution of the daily
number of transactions.

There are four important issues related to the problem of user profiling:

1. How to choose the numbers or groups of numbers that make up the
profile?

2. How to compare profiles and how to quantify the difference?

3. How to determine if a difference is significant?

We will discuss these issues in this chapter.

3.1 Profile construction

Usually, experts with domain knowledge already have a good idea which
aspects of a user’s behaviour are important for detecting outliers. So in
practice we ‘only’ need to determine how to represent these aspects as
elements in a profile. Note that there is no ‘universal’ good or bad way of

17

CHAPTER 3. USER PROFILING

constructing the profiles; it depends very much on the domain. In the
following sections, we will describe some elements in the context of the
Netflix data. They are intended as examples of what is possible.

3.1.1 Aggregates and basic statistics

The list below contains some of the profile elements used by The Ensemble,
the runner-up in the Netflix Prize competition. See Sill et al. (2009). The
exact meaning of these elements is not important, but it should make clear
that defining them is a creative process where one learns by trial and error.

• A binary variable indicating whether the user rated more than 3
movies on this particular date.

• The logarithm of the number of distinct dates on which a user has
rated movies.

• The logarithm of the number of user ratings.

• The mean rating of the user, shrunk in a standard Bayesian way
towards the mean over all users of the simple averages of the users.

• The standard deviation of the date-specific user means from a model
which has separate user means (a.k.a. biases) for each date.

• The standard deviation of the user ratings.

• The logarithm of (rating date - first user rating date + 1).

• The logarithm of the number of user ratings on the date + 1.

3.1.2 Histograms

For the Netflix dataset, we could use a histogram of the ratings done by a
particular user as his/her profile. This histogram can then be either
normalized to have total area one or left unnormalized (with counts in the
histogram). For instance, the unnormalized histogram profile of user
2439493 was already shown in figure 2.2 in section 2.4.1. The normalized
histogram of user 42 is shown in figure 3.1.

18

CHAPTER 3. USER PROFILING

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rating

R
el

at
iv

e
fr

eq
ue

nc
y

Scaled histogram of the ratings of user 42

Figure 3.1: Histogram of ratings of user 42.

3.1.3 Modelling probability density functions

Here, we take a more probabilistic approach to the problem and try to find
a probability density function (p.d.f.) that models the user’s behaviour
well. This way, the profile can consist of only the parameter(s) of this p.d.f.
In simple situations, we can use one of the known distributions (Normal,
Log-Normal, multinomial, Poisson, . . .) and fit it to the user’s data. But
usually it is unknown which of these distributions fits the data best and we
need to use other techniques.

The most common approach is to use a so-called Mixture Model, which
models the user’s behaviour as a weighted sum of p.d.f.’s. The weighted
sum is created in such a way that the Mixture Model is again a p.d.f. By
using this Mixture Model, we can model p.d.f.’s of a more general form
than those covered by the classical p.d.f.’s. The payoff is that more
parameters need to be kept in the profile, as well as the weights.

Below we will discuss some examples of Mixture Models that are commonly
used. Section 3.5 contains some more references on modelling p.d.f.’s.

Mixture of Gaussians

This is one of the most common approaches of modelling p.d.f.’s and is
usually denoted by GMM (Gaussian Mixture Model). Generally speaking,
we assume that records in the dataset are generated from a (weighted)

19

CHAPTER 3. USER PROFILING

mixture of K Gaussian distributions, i.e.,

p(y) =

K∑
k=1

αk · pk(y;µk,Σk).

The µk and Σk are the parameters of the K Gaussian distributions pk and
the αk are weights such that

K∑
k=1

αk = 1, αk > 0 ∀k = 1 . . .K.

See also the textbooks by Bishop (2007) and Duda et al. (2000).

The µk, Σk and αk are to be learned from the data. Learning is done with
the help of the Expectation-Maximization algorithm (EM in short) by
Dempster et al. (1977):

Algorithm 1: Expectation-Maximization (applied to GMM).

1. Start with some initial values for the parameters and weights.
A common approach is to initialize αk, µk and Σk with the
results of a few iterations of K-means.

2. E-step: For each data point y, calculate the membership
probability pk(y;µk,Σk) of each component k.

3. M-step: For each component k, find the points for which this
component is the one with the highest membership probability.
Based on these points, re-estimate µk and Σk. Update
αk to the fraction of all points that is in component k.

4. Repeat steps 2 and 3 until convergence or until a number of
predefined iterations has been done.

Mixture of multinomials

Another option is to model p.d.f.’s via a mixture of multinomials. Where
GMM’s are for continuous data, multinomials can be used for discrete
data. The p.d.f. of a d-dimensional multinomial distribution is given by

p(y; θ) =

(
N

y1 · . . . · yd

) d∏
i=1

θyii , (3.1)

where N = y1 + . . .+ yd and the parameters θ satisfy θ1 + . . . θd = 1. A
mixture of multinomials then becomes

20

CHAPTER 3. USER PROFILING

p(y) =
K∑
k=1

αkpk(y; θ),

with pk(y; θ) as in equation (3.1) and again

K∑
k=1

αk = 1, αk > 0 ∀k = 1 . . .K.

As with Gaussian Mixture Models, estimation of the parameters can be
done with EM. Algorithm 2 shows the procedure.

Algorithm 2: Learning a mixture of multinomials.

1. Initialize parameters θk randomly and weights to, e.g., αk = 1
K .

2. E-step: For each data point y, calculate the membership
probability pk(y; θk) of each component k.

3. M-step: For each component k, find the points for which this
component is the one with the highest membership probability.
Based on these points, re-estimate θk. Update αk to
the fraction of all points that is in component k.

4. Repeat steps 2 and 3 until convergence or until a number of
predefined iterations has been done.

During the calculation of the membership probabilities (from equation
(3.1))in the E-step, the multinomial coefficient is usually omitted. This can
be done because the coefficient is the same for all components and thus has
no influence on the M-step.

Naive Bayes Estimation

This technique by Lowd and Domingos (2005) combines the previous two
ideas and uses Gaussians for continuous attributes and multinomials for
discrete attributes. What is special about this algorithm is that it also tries
to estimate the number of components that are needed in the mix by
repeatedly adding and removing components. The procedure is shown in
algorithm 3. It takes as input: a training set T, a hold-out set H, the
number of initial components k0 and the convergence thresholds δEM and
δADD.

21

CHAPTER 3. USER PROFILING

Algorithm 3: Naive Bayes Estimation (by Lowd and Domingos
(2005)).

Initialise the mixture M with one component.

Set k = k0 and Mbest = M .

Repeat:

Add k new components to M and initialise them
with k random samples from T. Remove these
samples from T.

Repeat:

E-step: Calculate the membership probabilities.
M-step Re-estimate the parameters of the mixture
components.

Calculate log(p(H|M)). If it is the best so far, set
Mbest = M . Every 5 iterations of EM, prune low-weight
components.

Until:log(p(H|M)) fails to improve by more than δEM .

M ←Mbest.

Prune low-weight components.

k ← 2k.

Until:log(p(H|M)) fails to improve by more than δADD.

Apply EM twice more to Mbest with both H and T.

Note that each time the EM algorithm converges on a mixture, the
procedure doubles the amount of components to add to the previous
mixture. This is counter balanced by the periodic pruning of low-weight
components.

The authors compare NBE to Bayesian Networks (using Microsoft
Research’s WinMine Toolkit) by applying them to 50 datasets. They find
that both methods give comparable results. Our experiments with this
algorithm suggest some aspects that are a candidate for improvement:

• Merging components. NBE does not merge similar components,
only components that have exactly the same parameters. As a result,
NBE often returns mixtures with very similar components.

22

CHAPTER 3. USER PROFILING

• Extra EM iterations. NBE finishes with two extra EM iterations on
Mbest. Our experiments show that it is usually wise to do more of
these iterations instead of adding more components.

3.1.4 Mixture models applied to user profiling

A very nice example of learning mixture models as user profiles is given in
a paper by Cadez et al. (2001). There they deal with a department store
that has collected data about purchases of customers. Cadez et al. (2001)
are interested in creating a customer profile that captures the amount of
products that a customer buys in one transaction in each of the store’s 50
different departments (its ‘behaviour’). Their approach is as follows:

• Create a ‘global profile’ that captures the behaviour of the ‘average’
user. It is a mix of 50-dimensional multinomials, learned from all
transactions of all customers.

• Personalize this global profile to a customer profile. This is done by
‘tuning’ the weights in the global profile to customer-specific weights,
based on the transactions of the customer. These customer-specific
weights then form a customer profile.

The global profile is learned using algorithm 2 from section 3.1.3. To
formalize this, we need some notation. The data consists of individual
transactions yij , indicating the jth transaction of customer i. Each yij is a
vector (of length 50) of the number of purchases per department.
Supposing that transaction yij is generated by component k, the
probability of transaction yij (its ‘membership probability’) is

p(yij |k) ∝
C∏
c=1

θ
nijc

kc , (3.2)

where 1 ≤ c ≤ C is the department number (C = 50), θk∗ are the 50
parameters of the kth multinomial and nijc is the number of items bought
in transaction yij in department c. Note that the parameters θkc of the
components in the mixture do not depend on customer i: they are global.
Also observe that the multinomial coefficient is omitted (as remarked after
algorithm 2), hence the ’∝’ in equation (3.2). The probability of
transaction yij now becomes

p(yij) =
K∑
k=1

αkp(yij |k). (3.3)

The αk are the weights (with total sum 1). Algorithm 2 can now be
applied using equations 3.2 and 3.3.

23

CHAPTER 3. USER PROFILING

Personalising the global weights αk to customer-specific weights αik is done
by applying one more iteration of EM using only the transactions of a
customer. There are also other options for obtaining customer-specific
weights, see the appendix in Cadez et al. (2001). Once the αik are known,
the p.d.f. describing the customer’s behaviour is given by

p(yij) =

K∑
k=1

αikp(yij |k). (3.4)

The paper by Cadez et al. (2001) also provides some figures illustrating the
technique described above. Figure 3.2 shows a histogram of the
components in the global profile after learning a mixture of K = 6
multinomials from all the transactions. Note that each component has
most of its probability mass before or after department 25. The
components capture the fact that the departments numbered below 25 are
men’s clothing and the ones numbered above 25 are women’s clothing.

Figure 3.2: Global model: histogram of
each of the K = 6 components.

24

CHAPTER 3. USER PROFILING

Figure 3.3: Histogram of the global components combined with the global
weights (top) and the customer-specific weights (bottom).

The authors also show the effect of the extra EM iteration for learning
customer-specific weights. For this, they select a customer who purchased
items in some of the departments 1-25, but none in the departments higher
than 25. The bottom half of figure 3.3 shows a histogram of the
‘personalized mixture’ of equation 3.4 (the global components combined
with the customer-specific weights). For comparison, the top half of figure
3.3 shows a histogram of the components combined with the global weights.
Note that, in the bottom half of figure 3.3, there is some probability mass
in departments higher than 25, even though this customer never bought
anything there. The model has learned from the global components that it
happens sometimes that people shop for both men’s and women’s clothes
and has incorporated this knowledge in the customer’s behaviour.

3.1.5 Netflix: Simon Funk’s idea

There are many other ideas that can be used to obtain profiles or profile
elements. With respect to the Netflix data, one such example was given by
Simon Funk, a pseudonym for Brandyn Webb. In december 2006 he
reached third place and published his approach to the problem on his blog
(see http://sifter.org/~simon/journal/20061211.html). DeSetto and
DeSetto (2006) implemented this idea and made C++ code publically
available.

Simon Funk’s idea is based on the Singular Value Decomposition of a
matrix. This method states that every n×m matrix X can be decomposed
into three matrices U (n× n), D (n×m) and V (m×m) such that

25

http://sifter.org/~simon/journal/20061211.html

CHAPTER 3. USER PROFILING

X = UDV T .

Here, U and V are unitary matrices and D is a rectangular diagonal
matrix. The entries on the main diagonal of D are called the singular
values. In theory, SVD could be applied to the ratings matrix R, the
matrix of size #users × #movies with ratings as entries. The number of
values in this matrix is 480.189 · 17.770 = 8.532.958.530. With such
numbers, R would use about 7GB of memory and the matrix U would take
about 850GB. So the matrices are too big to use in this way. Also, the
Netflix dataset does not contain ratings of all users for all movies, so most
of the entries in R are unknown. So before applying SVD, we would need
to substitute the unknown ratings by, e.g., zero or a random value. This is
an extra source of errors and, because of the many missing values,
probably a big source.

Funk’s idea continues along this line and provides a solution for both the
size of the matrices and the missing values. He suggests to create ‘features’
of length f for both movies and users in such a way that the predicted
rating of user i for movie j is given by

r̂ij =

f∑
k=1

uik ·mjk. (3.5)

Here, (ui1, . . . , uif) and (mj1, . . . ,mjf) are the user and movie features
respectively. He then defines the error function

E =
∑
i,j

(r̂ij − rij)2,

which is a function of all the movie and user features, so
(480.189 + 17.770) · f unknowns in total. A minimum of this function can
then be found be applying gradient descent. The number of features f is
determined experimentally (f ≈ 100 for the Netflix data).

Note that, if all user had rated all movies, equation (3.5) would be
equivalent to decomposing R in matrices U (n× f) and M (m× f) such
that

R = UMT .

Up to some constant factors this is equivalent to SVD, which explains the
relation to SVD. But note that Funk’s idea only uses the known ratings
and is computationally inexpensive, both big advantages compared to the
SVD approach. Because of these properties, as well as its simplicity, clear

26

CHAPTER 3. USER PROFILING

practical interpretation and accuracy, Funk’s idea became a prominent
algorithm in the Netflix Prize competition.

We modified the code by DeSetto and DeSetto (2006) slightly so that it is
useable in Matlab. To keep computations time within acceptable bounds,
we limit the algorithm to f = 6 features. For each user (and each movie)
this results in a vector of 6 numbers, which we refer to as Funk’s (user)
profile in the rest of this thesis. As an example, we take user 42 for whom
we saw the histogram profile in figure 3.1. This user has profile

1.7690 -0.4779 0.1619 -0.0178 0.1611 -0.1770

Another example is user 2439493 (from figure 2.2) who has profile

0.1458 -0.4505 0.2748 -0.1985 -0.3632 -0.0764

Note that, with respect to user profiling, we do not know which aspects of
user behaviour are captured by these numbers. We only know that they
can be combined with features of a movie to predict the user’s rating of
that movie.

3.2 Comparing profiles

Once a profile has been constructed, it is important to be able to compare
them. Methods for outlier detection, dimensionality reduction,
visualisation and clustering often depend on this. Below, we will discuss
some methods for quantifying the similarity between two profiles. We
distinguish between distance based techniques and techniques for
quantifying the difference between two probability distributions.

3.2.1 Distance measures

We will denote the distance between two profiles x and y as d(x, y), where
x and y are n-dimensional vectors x = (x1, . . . , xn) and y = (y1, . . . , yn).
Many of these distance measures exist and we will list some of them below.

Euclidean distance

The Euclidean distance is given by

d(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2. (3.6)

It has been used for centuries and is widely known.

27

CHAPTER 3. USER PROFILING

Standardized Euclidean distance

Note that if values along, say, the first dimension are significantly larger
than in other dimensions, then this first dimension will dominate the
Euclidean distance. This is often an unwanted situation. For instance, when
looking for outliers with the Euclidean distance, mostly outliers in the first
dimension would be found. One solution to this problem is to weight each
term in equation 3.6 with the inverse of the variance of that dimension. So

d(x, y) =

√
(x1 − y1)2

σ21
+ . . .+

(xn − yn)2

σ2n
,

with σ2i (i = 1 . . . n) the sample variance in each dimension. This is often
called the Standardized Euclidean distance.

Lp metric

The Lp metric (also known as the Minkowski-p distance) is a generalisation
of the Euclidean distance. It is given by

d(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

.

With p = 2 this is the same as the Euclidean distance, with p = 1 it is
called Cityblock distance, Manhattan distance or Taxicab distance.

Mahalanobis distance

Just like the Standardized Euclidean distance, the Mahalanobis distance
takes variabilities into account that occur naturally within the data. It is
calculated from

d(x, y) =
√

(x− y)Σ−1(x− y)T ,

with Σ the covariance matrix.

3.2.2 Difference between probability distributions

Here we suppose that vectors x and y are vectors with probabilities such
that

n∑
i=1

xi = 1,
n∑
i=1

yi = 1.

The sections below each provide a method for quantifying the difference
between two (discrete) probability distributions. These can be applied to,
for instance, comparing normalized histograms.

28

CHAPTER 3. USER PROFILING

Kullback-Leibler divergence

The Kullback-Leibler divergence of x and y is given by

d(x, y) =

n∑
i=1

xi log
xi
yi
.

Note that when the ratio xi/yi equals 1, the contribution to the sum is 0.
When xi and yi differ a lot, the ratio and logarithm ensure a large
contribution to the sum. Note that zero value for xi or yi cause problems
and that the Kullback-Leibler divergence is not symmetric.

Bhattacharyya distance

The Bhattacharyya distance is defined by

d(x, y) = − log
n∑
i=1

√
xiyi.

A disadvantage of this measure is that large xi and small yi can cancel
each other out and have very little contribution to the sum. Also, as with
the Kullback-Leibler divergence, zero values can cause problems and it is
not symmetric.

Rényi divergence

The Rényi divergence is defined as

d(x, y) =
1

1− α
log

n∑
i=1

xαi y
1−α
i .

It is not often used in the context of outlier detection.

The χ2 statistic

This statistic can be used to measure the distance between two
unnormalized histograms, so here we suppose that x and y contain counts
and not relative frequencies. Let nx =

∑
i xi and ny =

∑
i yi and define

K1 =

√
ny
nx
,K2 =

√
nx
ny
,

then the χ2 statistic is given by

d(x, y) =

n∑
i=1

(K1xi −K2yi)
2

xi + yi
.

Zero values for xi or yi can cause problems here as well.

29

CHAPTER 3. USER PROFILING

3.2.3 Custom similarity measures

Sometimes quantifying the difference between two profiles is not as
straightforward as applying one of the methods discussed above. A
(weighted) combination of two or more distance measures might be
appropriate or maybe a creative idea based on domain knowledge is the
way to go. As an example of such a creative idea, we construct a similarity
measure for Funk’s profiles of section 3.1.5. Remember that the rating rij
of user i on movie j is estimated by

r̂ij =

f∑
k=1

uik ·mjk. (3.7)

One could argue that movie features should be reasonably constant over
time, because they do not change their ‘behaviour’. So if the predicted
ratings of two users on the same movie are different, it is probably caused
by a difference in behaviour of the two users. We can use this observation
to quantify the difference in behaviour between two users. We take all
movies and compare the total difference in predicted ratings for both users.
So formally, the difference between two users (with profiles ur and us
respectively) is defined by

d(ur, us) =
1

M

M∑
j=1

(r̂rj − r̂sj)2 . (3.8)

Here, j sums over all M = 17770 movies in the dataset. In chapter 6 we
will do some experiments with this idea. We should remark here that, even
though the similarity measure presented in this section was created based
on practical considerations, it is similar to the Mahalanobis distance. To
see this, rewrite equation (3.7) as an inner product of ui and mj , i.e.,
r̂ij = uTi mj . Then equation (3.8) becomes

d(ur, us) =
1

M

M∑
j=1

(r̂rj − r̂sj)2

=
1

M

M∑
j=1

(
uTrmj − uTsmj

)2
=

1

M

M∑
j=1

(
(ur − us)Tmj

)2
=

1

M

M∑
j=1

(
(ur − us)Tmjm

T
j (ur − us)

)
= (ur − us)T

 1

M

M∑
j=1

mjm
T
j

 (ur − us).

30

CHAPTER 3. USER PROFILING

The term 1
M

∑M
j=1mjm

T
j is a matrix, so it is indeed similar to a squared

Mahalanobis distance.

3.3 Significance of the difference

There is no general way of telling whether a difference between two profiles
is significant. It depends on the difference measure that was chosen, on
domain knowledge and on experimental results. For instance, in the
context of fraud detection, a threshold on the difference that is too low will
result in a system with too many warnings.

3.4 Discussion

In practice, the aspects of the dataset that are important for a user’s
behaviour can be given by domain experts. The challenge is in
constructing the elements in a profile from these aspects. In this chapter
we saw some examples of elements that may of use when creating a user
profile. We also showed some approaches that can be used when modelling
user behaviour with a p.d.f. Being able to compare these profiles is
important for outlier detection and detecting change in user behaviour. We
have a separate chapter on both topics, so we will return to the distance
measures of section 3.2 later on.

3.5 Further reading

Modelling p.d.f.’s

We have discussed only three ways to construct a p.d.f. from data, all of
which were variation of a mixture model. But there are other approaches
as well. An example is a Bayesian Network, which is (for discrete data) a
directed graph with a probability table at each node. This table describes
p(node|parents), where an arc from node i to node j indicates that node i
is a parent of node j. Obtaining the probability table from the data is done
by calculating the relative frequencies of the entries in the table. The
difficulty with Bayesian Networks is in obtaining the structure, i.e.,
deciding which node is a parent of which node. It is known to be NP-hard.
More information about Bayesian Networks can be found in textbooks
such as Witten and Frank (2005) and Russel and Norvig (2002). Other
examples of how to model p.d.f.’s can be found in John and Langley (1995)
and Chen et al. (2000).

Comparing profiles

There are many distance measures available. Besides the ones mentioned in
section 3.2.1, the Matlab function pdist also provides the following

31

CHAPTER 3. USER PROFILING

distance measures: cosine, Hamming, Jaccard, Chebychev, correlation and
Spearman. Johnson and Wichern (2002) mention the Canberra distance
and Czekanowski coefficient and also provide a nice illustration of the
effect of standardizing the Euclidean distance. Lattin et al. (2003) discuss
the Lp metric and Mahalanobis distances.

Updating a profile

In some cases we would like to use a single transaction to update the
profile of a user. This is useful, for instance, in detecting anomalies in
credit card transactions. Millions of such transactions are handled daily
and it would take too much time to recompute a profile each time a
transaction comes in. Since a profile usually contains aggregates and/or
parameters, updating a profile from a single transaction is non-trivial.

We have left this part of user profiling out of this thesis because of time
considerations, but it is an interesting research topic and thus we supply
some reference for interested readers. In Chen et al. (2000), the authors
describe how to update a histogram and quantiles. Burge and
Shawe-Taylor (1997) construct profiles for detecting fraud in cellular phone
usage and describe how to update those profiles. A more general discussion
can be found in Cortes and Pregibon (2001).

Combining profiles

Usually there are two parties involved in a transaction. Outlier detection
can be applied to both sides of this transaction. With the Netflix data, a
rating by a user on a movie could be compared to both user profile and
movie profile. Similarly, with a credit card transaction, it can be compared
to the card holder’s profile and the merchant’s profile.

Terminology

Some terminology that might help interested readers find related papers:

• Concept drift. Often used to describe the change in time of a user
profile.

• Time-driven vs. Event-driven. These terms are usually used in
relation to fraud detection. Time-driven means that fraud detection
is done periodically and event-driven indicates that fraud detection is
done as the transaction comes in.

32

Chapter 4

Outlier Detection

Outlier detection techniques basically fall into the following categories:

• Statistics-based techniques.

• Distance-based techniques.

• Clustering-based techniques.

• Depth-based techniques.

We will only discuss techniques of the first two types here, since they are
closest to our problem. References for the other types will be given in
section 4.5. All techniques in this chapter are applied to a random selection
of 5000 of Funk’s user profiles. The results of these experiments are
presented in section 4.3.

4.1 Statistics-based techniques

4.1.1 One dimensional data

Outlier detection has been studied quite a lot for one dimensional data.
Visual techniques such as box plots and histograms are often used, as well
as numeric quantities such as mean absolute deviation and z-score. In our
situation, the user profiles are usually multi-dimensional, so these
techniques are not directly portable to that scenario. But we can apply the
one dimensional techniques to each dimension of the user profile and get
some outliers that way.

33

CHAPTER 4. OUTLIER DETECTION

4.1.2 Robust Least Squares

The regular Least Squares algorithm tries to find parameters β that
minimize

n∑
i=1

(yi − f(β; xi))
2 ,

where yi is the dependent variable, xi the (vector of) explanatory variables
and f some function. It is known that this procedure is very susceptible to
outliers. Robust Least Squares is a general term describing the effort of
making Least Squares more resilient to outliers. An example of a robust
method is Iteratively Reweighted Least Squares which iteratively solves a
weighted least squares problem. The procedure is described (in general
terms) in algorithm 4.

Algorithm 4: Iteratively Reweighted Least Squares.

1. Set t← 1 and start with some initial choice for the weights w
(1)
i .

2. Calculate parameter β(t) from

β(t) = argmin
β

n∑
i=1

w
(t)
i (yi − f(β; xi))

2 .

3. Update weights to w
(t+1)
i using β(t).

4. Repeat steps 2 and 3 until convergence or until a number of
predefined iterations has been done.

There is a wide variety of ideas on how to update the weights in step 3.
For instance, one could choose weights as

w
(t+1)
i =

1

|yi − f(β(t); xi)|
.

This way points with large errors get small weights and points with small
errors get large weights. Other examples can be found in the
documentation of the Matlab function robustfit or Steiglitz (2009). With
respect to outlier detection, a point with a small weight may indicate that
it is an outlier.

34

CHAPTER 4. OUTLIER DETECTION

4.2 Distance-based techniques

4.2.1 Onion Peeling

The idea of Onion Peeling, or Peeling in short, is to construct a convex
hull around all the points in the dataset and then find the points that are
on the convex hull. These points form the first ‘peel’ and are removed from
the dataset. Repeating the process gives more peels, each containing a
number of points.

This technique can be modified to find outliers. The largest outlier in the
dataset will be on the first peel, so by inspecting the total distance of each
point on the hull to all other points in the dataset, we can find the one
with the largest total distance. Removing this point from the dataset and
repeating the process gives new outliers. Peeling is outlined in algorithm 5.

Algorithm 5: Peeling

1. Calculate the convex hull around all the points in the dataset.

2. Find the point with the largest distance to all other points in the
dataset.

3. Remember the outlier and remove it from the dataset.

4. Repeat steps 1-3 until the desired number of outliers
has been found.

This procedure works fine if one is interested in finding, say, the 10 largest
outliers. But stopping the process automatically when the resulting outlier
is not an outlier any more is quite difficult. There are two basic criteria
that can be used: (1) the decrease in volume of the convex hull and (2) the
decrease in total distance of the outlier. But for each of these criteria an
example dataset can be constructed that stops peeling when outliers are
still present. We do not experiment with these automatic stopping criteria
here, because for this thesis we were satisfied with obtaining the top 10
outliers.

4.2.2 Peeling with standardized data

Peeling uses the Euclidean distance measure, so it might be better to
standardize the data with zscore before starting peeling.

35

CHAPTER 4. OUTLIER DETECTION

4.2.3 Peeling with Mahalanobis distance

It is also possible to use a completely different distance measure for
calculating the total distance of a point on the hull to all other points in
the dataset. For instance, the Mahalanobis distance measure of section
3.2.1 can be used.

4.2.4 Local Reconstruction Weights

This idea is based on ideas from a technique called Locally Linear
Embedding, which we will discuss in section 5.4. It starts by determining
the k nearest neighbours of all the points in the dataset. Once these have
been found, it tries to reconstruct each point as a linear combination of its
neighbours. This reconstruction is done with linear regression. We suspect
that points with large reconstruction weights will be outliers in the data.

4.3 Experiments

We apply the techniques from this chapter to Funk’s user profiles. As an
example of a one dimensional technique, we inspect each of the 6
dimensions of Funk’s user profiles and look for profiles that deviate (in
either of the 6 dimensions) more than three standard deviations from the
mean. For this, we use the Matlab function zscore, which standardizes
each dimension of the data by subtracting the mean and dividing by the
standard deviation. Outliers can then be found by looking for points in the
standardized data that have a value of more than three in either of the 6
dimensions. The userIds corresponding to the outliers are in the second
column of table 4.1, sorted by z-score.

The third column shows the results from Iteratively Reweighted Least
Squares. We use the Matlab function robustfit (which does linear
Iteratively Reweighted Least Squares) and apply it to Funk’s user profiles,
with the first five numbers of a profile as explanatory variables (xi) and
the last one as dependent variable (yi). We again use zscore to
standardize the data, otherwise small weights may be caused by large
variables. The outliers in table 4.1 are sorted by weight.

The fourth, fifth and sixth column show the result of Peeling with
Euclidean distance, Peeling with standardized data and Peeling with the
Mahalanobis distance. All three columns are sorted by distance.

The last column show the outliers that result from the method of Local
Reconstruction Weights. The outliers are sorted on reconstruction weights.

36

CHAPTER 4. OUTLIER DETECTION

Rank z-score IRLS PeelE PeelSE PeelM LRW

1 102079 193469 1544545 102079 102079 1756494
2 1544545 712270 102079 1544545 1544545 931040
3 1991704 1353981 939294 164827 164827 164827
4 164827 1755837 2305400 2305400 712270 2305400
5 712270 237672 2097488 712270 2305400 1561534
6 1810367 1858405 963366 237672 2366300 1420404
7 2366300 1176448 164827 1991704 1991704 1049352
8 2496577 431571 1991704 2366300 237672 311869
9 904531 164827 712270 310856 186683 1728915
10 963366 437418 2596083 939294 963366 1020870

Table 4.1: Outlier userIds.

Table 4.1 is not very instructive when comparing the methods. It is more
interesting to see how many outliers each of the methods have in common.
Table 4.2 shows the number of common outliers in the top 10 for each
combination of the methods from this chapter.

1. 2. 3. 4. 5. 6.

1. Z-score -1 2 6 6 7 1
2. IRLS 2 -1 2 3 3 1
3. Peeling (Eucl.) 6 2 -1 7 7 2
4. Peeling (z-scored) 6 3 7 -1 8 2
5. Peeling (Mahalanobis) 7 3 7 8 -1 2
6. Loc. Rec. Weights 1 1 2 2 2 -1

Table 4.2: The number of common outliers of the methods discussed before.

So we see that the variations on Peeling all give similar results. Apparently
this selection of Funk’s profiles does not benefit from standardization of
the data. But we have seen other samples that did give better results on
standardized data. From the table we also observe that z-score and Peeling
with Mahalanobis distance measure agree quite well. This is expected, since
Mahalanobis distance and taking the z-score try to achieve similar goals.

4.4 Discussion

Based on the experiments from this chapter, it is difficult to say which
outlier detection method is ‘the best’. Each method has its strong and
weak points. The one dimensional techniques from section 4.1.1 are
intuitive, but they cannot be applied to, e.g., the histogram profiles. The
results from section 4.1.2 assume that the dataset is linear. Non-linear
aspects can be incorporated into the method via function f , but it is still
difficult to decide what f should be based on the data. The Peeling

37

CHAPTER 4. OUTLIER DETECTION

algorithm from section 4.2.1 seems promising, but attention needs to be
paid to the form of the data and/or the distance measure that is used.
Also, the method does not give any indication of how many outliers the
dataset contains. The method with Local Reconstruction Weights does not
seem to be particularly useful: if the k nearest neighbours are available,
why not just work with distances instead of weights?

Another thing to keep in mind is that some methods rely on the
calculation of all inter-point distances. For our user profiles, this leads to a
matrix with O(n2) elements and this might be too large to keep in
memory. We used only 5000 profiles, so the full matrix can still be kept in
memory. But in practice, this limitation may cause problems.

4.5 Further reading

Clustering-based techniques

Clustering techniques try to find clusters that are representative of the
data. Often, outliers have a large effect on the placement of clusters and
are therefore identified and removed in the process. So these techniques
can produce outliers as a by-product. A disadvantage of using clustering
techniques for outlier detection is that they do not always return a
measure of how much a point is an outlier.

The most well known clustering techniques are K-means and Hierarchical
clustering. The mixture models of section 3.1.3 can also be seen as
clustering techniques. An overview of clustering techniques is given in the
survey by Berkhin (2006). The paper by Jain (2010) gives a history of
clustering and the current developments. For hierarchical clustering, the
Matlab documentation is a very good starting point. Some more references
on how to detect outliers with these techniques can be found in the surveys
by Agyemang et al. (2006) and Hodge and Austin (2004).

Depth-based techniques

These techniques try to assign a so-called depth to points and detect
outliers based on these depths. Usually, depths are assigned in such a way
that points with low depth are outliers. We have not looked deeply into
these techniques, but the survey by Agyemang et al. (2006) gives some
references.

Surveys

With a broad topic like outlier detection, it is very easy to lose overview of
the available techniques. Many people have tried a wide variety of creative
ideas to find outliers in an abundance of domains. So surveys are an easy

38

CHAPTER 4. OUTLIER DETECTION

way to get started with the topic. We have already mentioned the surveys
by Agyemang et al. (2006) and Hodge and Austin (2004). Besides these,
Chandola et al. (2009) and the two part survey Markou and Singh (2003a)
and Markou and Singh (2003b) provide good reading. In the context of
fraud detection, Li et al. (2007), Phua et al. (2005) and Bolton et al.
(2002) can be read.

39

40

Chapter 5

Dimensionality reduction
techniques

In chapter 3 we saw various ways of constructing elements of a user profile.
Often, the number of elements contained in a profile is too large for
practical purposes. Dimensionality reduction techniques are available for
converting profiles to a manageable dimension. In this chapter we
investigate the effect of dimensionality reduction techniques on outliers.
We focus on reducing data to two dimensions so that we can visually
inspect outliers.

There are many dimensionality reduction techniques available, but we
focus on five of these: Principal Component Analysis (PCA),
Multidimensional Scaling (MDS), AutoEncoders, Locally Linear
Embedding (LLE) and t-Stochastic Neighbourhood Embedding (tSNE).
The first three are the most often used methods, LLE is currently gaining
popularity and tSNE is relatively new. We will mention some other
techniques in section 5.7. For applying these methods, we will use the same
selection of Funk’s user profiles that we used in the previous chapter.

We are mainly interested in finding out whether these methods preserve
outliers. To do this, we will take the following approach for each of the
dimensionality reduction techniques mentioned above:

1. Start with Funk’s 6 dimensional user profiles. We will refer to these
as our high dimensional points.

2. Find outliers in these high dimensional dataset using the Peeling
algorithm with Mahalanobis distance from section 4.2.3.

3. Reduce the dimensionality of Funk’s user profiles to 2. We will refer
to these reduced profiles as low dimensional points.

41

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

4. Find outliers among these low dimensional points, again using the
Peeling algorithm with Mahalanobis distance.

5. Create a 2D plot of the low dimensional points and highlight the
outliers found in high dimensional space and the outliers found in
low dimensional space.

6. With this figure we can visually judge whether outliers are preserved
by the dimensionality reduction technique.

5.1 Principal Component Analysis

Principal Component Analysis is an application of the Singular Value
Decomposition of section 3.1.5. Recall that for a given matrix X,

X = UDV T

is the Singular Value Decomposition of X. If X is of size n×m, then U is
a n× n unitary matrix, D is a n×m rectangular diagonal matrix with
that singular values on its main diagonal and V is a m×m unitary matrix.
Usually, the columns of U and V have been rearranged such that the
singular values on the main diagonal of D are in decreasing order. Note
that if we denote with v1 the first column of V and with σ1 the first (and
thus the largest) singular value, then

||Xv1|| = ||UDV T v1|| = ||Uσ1|| = σ1.

Principal Component Analysis tries to benefit from this feature by aligning
v1 with the direction of the data in which the variance is the largest. It
achieves this by applying SVD to the covariance matrix of the data,
instead of applying it to the entire dataset. A nice illustration of this
method is given in Appendix A, where the good and bad movies of section
2.4.5 are visualized using PCA.

With respect to outlier detections, we would like to compare the outliers in
high-dimensional space to the outliers in two dimensional space and see
how many they have in common. For this, we create a 2D plot with both
types of outliers. As mentioned before, detecting outliers is done using the
Peeling algorithm with Mahalanobis distance. Figure 5.1 shows the 5000
profiles as yellow dots and the outliers that are common to low and high
dimensional space as squares. Triangles and circles represent outliers in
high and low dimensional space respectively.

42

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2
Outliers in original data and two dimensional data (created with PCA).

Data (5000)
Outliers in both dims (3)
Outliers in high dim (7)
Outliers in low dim (7)

Figure 5.1: Outliers compared in high and low dimension (PCA).

So we see that there are only three points that are outliers in both high
and low dimensional space. Note that PCA is a linear technique: each axis
is a linear combination of the original 6 elements of Funk’s user profile.
Points that are outliers in a direction different from the two first principal
components will not show up as outliers in the plot. These points are
mapped to the interior of the plot. So it is difficult to say whether an
outlier in low dimensional space is also an outlier in high dimensional
space. But we do know that PCA does not stretch distances (it is linear),
so if a low dimensional point y is a substantial outlier, then it is likely to
be an outlier in high dimensional space as well.

5.2 Multidimensional Scaling

The classical version of Multidimensional Scaling tries to find points in a
low dimensional space Y that minimize

min
Y

n∑
i=1

n∑
j=1

(
d
(X)
ij − d

(Y)
ij

)2
. (5.1)

Here X is the space containing the high dimensional points and d
(X)
ij and

d
(Y)
ij are distance measures. In classical MDS, the distance measure is the

Euclidean distance (see section 3.2.1). There are many variations on this
theme using a different distance measure or a different quantity to

43

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

optimize than the one in equation (5.1). These variations fall in the
category of metric MDS. It is also possible to use non-metric MDS, where
ranks are optimized instead of distances.

Most people do not use classical MDS, because it is equivalent to PCA (see
Ghodsi (2006b)) and neither do we. We use a criterion called squared stress

min
Y

∑n
i=1

∑n
j=1

(
d2ij

(X) − d2ij(Y)
)2

∑n
i=1

∑n
j=1 d

4
ij
(X)

.

This expression contains squares of distances, so the minimization focuses
mainly on large inter-point distances and thus on outliers. Figure 5.2 shows
the results. We see that the outliers in high dimension are located much
more to the outside of the plot than with PCA.

Figure 5.2: Outliers compared in high and low dimension (MDS).

5.3 AutoEncoders

AutoEncoders are Neural Networks that are trained to reconstruct their
input. Dimensionality reduction is done by incorporating a hidden layer in
the middle of the network with a few (in our case: two) nodes. After
training, forwarding a high dimensional input vector through the network
results in an activation value on each of these special nodes. These

44

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

activations are used as a low dimensional representation of the high
dimensional input vector.

The number of layers and the number of nodes per layer are to be selected
experimentally. The activation functions can also be chosen as desired.
When linear activation functions are used, the coordinates of each low
dimensional point are a linear combination of the coordinates of a high
dimensional point. So in that situation, AutoEncoders reduce
dimensionality in a way similar to PCA. But with non-linear activation
functions, AutoEncoders can provide a non-linear alternative to PCA,
which is one of their main advantages.

We omit a detailed explanation of AutoEncoders here, because that would
take more time and space than we have available. Interested readers are
referred to, e.g., the textbook by Bishop (2007) for more details or to the
paper by Hinton and Salakhutdinov (2006) for a nice example of
AutoEncoders.

For our experiments we use the default implementation from the
Dimensionality Reduction Toolbox by van der Maaten (2009) (see also
section 5.7). Figure 5.3 shows the resulting two dimensional representation
of Funk’s user profiles. There are no outliers that are common to both high
and low dimensional points.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18
Outliers in original data and two dimensional data (created with AutoEncoderEA).

Data (5000)
Outliers in high dim (10)
Outliers in low dim (10)

Figure 5.3: Outliers compared in high and low dimension (AutoEncoder).

45

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

5.4 Locally Linear Embedding

Locally Linear Embedding, by Roweis and Saul (2000), was already
mentioned briefly in section 4.2.4 on Local Reconstruction Weights. The
basic idea is to reconstruct a (high dimensional) point ui as a linear
combination of its k nearest neighbours. I.e., to minimize

min
w

n∑
i=1

||ui −
k∑
j=1

wijuNi(j)||
2, (5.2)

where w is a vector of weights and uNi(j) is the jth neighbour of point i.
LLE extends this idea by searching for points yi in low dimensional space
that use the same set of weights w. So it minimizes

min
Y

n∑
i=1

||yi −
k∑
j=1

wijyNi(j)||
2, (5.3)

where w is the vector of weight obtained by minimizing 5.2. Both
minimizations can be done with closed expressions, see Ghodsi (2006a).

The results of applying LLE to Funk’s user profiles can be seen in figure
5.4. It seems to do just about the opposite of what we would like it to do:
outliers in high dimensional space are mapped to the interior of the 2D
plot.

−10 −8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

8

10
Outliers in original data and two dimensional data (created with LLE).

Data (5000)
Outliers in both dims (2)
Outliers in high dim (8)
Outliers in low dim (8)

Figure 5.4: Outliers compared in high and low dimension (LLE).

46

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

5.5 t-Stochastic Neighbourhood Embedding

t-Stochastic Neighbourhood Embedding is a variation on Stochastic
Neighbourhood Embedding (SNE), first proposed by Hinton and Roweis
(2002). It presents the novel idea of defining a probability that two points
are neighbours. Mapping to low dimensional space is achieved by choosing
points that preserve these probabilities. Hinton and Roweis (2002) define a
Gaussian probability in high dimensional space of point i being a
neighbour of a given point j as

pi|j =
e−||ui−uj ||

2/2σ2
i∑

k 6=i e
−||ui−uk||2/2σ2

i

. (5.4)

The parameter σi is set by hand or determined with a special search
algorithm (see Hinton and Roweis (2002) for details). In low dimensional
space, probabilities similar to those in equation (5.4), are defined as

qi|j =
e−||yi−yj ||

2∑
k 6=i e

−||yi−yk||2
.

The parameter σi is not necessary here, because it would only lead to a
rescaling of the resulting low dimensional points yi.

The low dimensional points yi are then found by minimizing the
Kullback-Leibler divergence (see 3.2.2) of these two probabilities

min
Y

∑
i

∑
j

pj|i log
pj|i

qj|i
. (5.5)

Minimization of equation 5.5 can be done with, e.g., gradient descent,
scaled conjugate gradients or any other non-linear optimization technique.
Note the use of equation 5.5 attaches high costs to nearby points in high
dimensional space (large pj|i) that are being mapped too far away points in
low dimensional space (small qj|i). Hence, nearby points in high
dimensional space are being kept nearby in low dimensional space. This
does not hold for points that are far away in high dimensional space
(outliers, which have low pj|i). They may be mapped to nearby points
(with high qj|i) with very low costs. So this method does not seem very
suitable for outlier detection.

tSNE does not use a Gaussian probability in low dimensional space, but a
Student t-distribution with one degree of freedom

qj|i =
(1 + ||yi − yj ||2)−1∑
k 6=i(1 + ||yi − yk||2)−1

.

47

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

This distribution has heavier tails than the Gaussian used by SNE, so
should map nearby high dimensional points less nearby in low dimensional
space than SNE. It solves the so-called Crowding problem of SNE.

Applying tSNE to Funk’s user profiles gives the results shown in figure 5.5.
Observe how much nicer this picture is with respect to visualising the
data, but how unusable it is for outlier detection.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40
Outliers in original data and two dimensional data (created with tSNE).

Data (5000)
Outliers in high dim (10)
Outliers in low dim (10)

Figure 5.5: Outliers compared in high and low dimension (tSNE).

5.6 Discussion

From our experiments in this chapter we can conclude that applying one of
the dimensionality reduction methods we discussed to outlier detection
should be done with caution. Outliers detected in the original, high
dimensional space, are usually no longer outliers after reducing the
dimensionality of the data. So by applying dimensionality reduction
techniques some important features of outliers can be lost, making them
‘non-outliers’ in the low dimensional space.

Most dimensionality reduction techniques are focussed on visualisation and
are best suited for that use. We spent some time trying to manipulate the
dimensionality reduction techniques and their input, hoping to find some
better results. In hindsight, all these experiments basically identified
outliers in high dimensional space and tried to get the dimensionality

48

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

reduction techniques to preserve these outliers. But if we already have
outliers in high dimensional space, why take the extra step of reducing the
dimensionality.

Another problem that we ran into was that many dimensionality reduction
techniques rely on inter-point distances. We only used a small sample of
5000 user profiles, so computing all the 5000 ∗ (5000− 1)/2 inter-point
distances is possible. But with larger datasets, this is completely infeasible.

Out-of-sample reduction is also problematic with some techniques. For
instance, LLE determines reconstruction weights and then maps the points
to low dimensional space. But if, after reducing dimensionality, another
sample has to be reduced, then the existing mapping cannot be used
directly. For these techniques, some heuristics have to be used to
incorporate new samples into an existing mapping.

So, all in all, applying dimensionality reduction techniques to outlier
detection is not straightforward.

5.7 Further reading

Principal Component Analysis

There are many books available on PCA, for instance Lattin et al. (2003)
and Johnson and Wichern (2002). The paper by Yoon (2003) also explains
PCA quite nicely, as well as its relation to SVD and the Eigenvalue
Decomposition.

Multidimensional Scaling

Classical MDS is explained in Ghodsi (2006b) as part of a course on data
visualisation. The textbook by Lattin et al. (2003) is also an option, as is
the Matlab documentation on MDS on the Statistics Toolbox.

AutoEncoders

AutoEncoders are a special form of Neural Networks. Neural Networks are
explained in, e.g., Rojas (1996). Besides the experiments described in
section 5.3, we also investigated whether there was a relation between
outliers in high dimensional space and points that had large reconstruction
error from the AutoEncoder. But we found no such evidence. So our
experiments with AutoEncoders were quite disappointing, but there are
some examples of a successful application of AutoEncoders. See, e.g.,
Hinton and Salakhutdinov (2006).

49

CHAPTER 5. DIMENSIONALITY REDUCTION TECHNIQUES

Matlab scripts

For this chapter we made extensive use of the Dimensionality Reduction
Toolbox by van der Maaten (2009) and the corresponding paper van der
Maaten and Hinton (2008). This toolbox provides implementations for 13
dimensionality reduction techniques, of which we used PCA,
AutoEncoderEA and tSNE. The toolbox also provides an implementation
of classical MDS, but since we needed a non-classical version of MDS, we
used the Matlab function mdscale. LLE is also implemented in the
toolbox, but that implementation does not return a reduced version of
each point. Instead of modifying the code, we chose to use another LLE
implementation by Peyr (2010).

50

Chapter 6

Detecting change in
behaviour

This chapter contains two examples of how the techniques from this thesis
can be used in practice. It is not an in-depth discussion on detecting
change in user behaviour. That subject is large enough for a paper by
itself. See section 6.3 from some references.

6.1 Histogram profiles

In this section, we will focus on user 1792741. This particular user has
rated 6349 movies in the period from January 2000 until December 2005
(72 months). We will look for a change in behaviour using the following
approach:

1. Given a month, calculate the histogram profile (see section 3.1.2) of
user 1792741, using the ratings of that particular month.

2. Calculate another histogram profile, this time using all the ratings of
this user in the preceding three months.

3. These two profiles can now be considered as a ’short term’ and ’long
term’ profile. We investigate the difference between these two profiles
in order to find a change in behaviour.

By repeating the steps above for each of the 72 months, we can create a
graph with the differences of step 3 plotted against time.

The normalized histogram of ratings is a probability distribution, so we
can measure change in the long term and short term profiles with one of
the distance measures from section 3.2.2. Figure 6.1 shows the resulting
differences for most of those distance measures. We left out the Rényi

51

CHAPTER 6. DETECTING CHANGE IN BEHAVIOUR

divergence (because it is a generalisation) and added the Euclidean
distance for reference. Note that in the first three months a long term
profile is not defined, so we do not compute distances there and simply set
these to zero.

The plot shows that all distance measures consider the period from month
11 to 20 to be fairly regular. There is some difference between the
distances measures in the period around month 40. All show a peak there,
but the last three distance measures react more heavily. If we look at the
long term and short term histograms from months 38 to 42 (figure 6.2)
then we see that a big change in month 40 is justified. This also justifies
the use of other distance measures than the standard Euclidean distance.

Figure 6.1 also illustrates a weak point of the Kullback-Leibler divergence,
Bhattacharyya distance and χ2 statistic. In May of 2000 (month 5), the
user did not rate any movies. The Kullback-Leibler divergence,
Bhattacharyya distance and χ2 statistic do not cope with empty bins very
well, which results in the ‘gap’ in the graph at month 5 of these distances.

52

CHAPTER 6. DETECTING CHANGE IN BEHAVIOUR

Figure 6.1: The figures above contain, for each month, a measure of the
difference between (1) the histogram profile of the ratings of that month
and (2) the histogram profile of the ratings of the preceding three months.
Each figure illustrates the use of one difference measure.

53

CHAPTER 6. DETECTING CHANGE IN BEHAVIOUR

Figure 6.2: Long term and short term profiles for months 38-42.

54

CHAPTER 6. DETECTING CHANGE IN BEHAVIOUR

6.2 Funk profiles

In section 3.2.3 we defined a method for comparing Funk’s user profiles and
we are going to use that to find users that change their behaviour. First,
we will restrict ourselves to the 500 most active users, for computational
reasons. For each user, we split his/her ratings into two equal sized sets
and compute the user profile on each of these two sets. These two profiles
can be compared using the quantity in equation (3.8), i.e., with

d(u1, u2) =
1

M

M∑
j=1

(r̂1j − r̂2j)2 . (6.1)

Here u1 and u2 denote the two profiles of one user on the two sets of
his/her ratings. Recall from section 3.2.3 that we assume the movie profiles
to be constant, so the difference calculated in equation 6.1 can only be
caused by a difference in the two profiles u1 and u2. Figure 6.3 shows that
most users have a distance between their two profiles of approximately 1.5
or lower, but some have a higher difference.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Absolute difference (sorted) between predictions on first and
second half of ratings of the 500 most active users.

Users

A
bs

ol
ut

e
di

ffe
re

nc
e

Figure 6.3: Difference in predictions on both sets for 500 most active users.

The users with largest difference in predictions are users 1028463, 825353
and 122197 with a difference of 3.5810, 2.9608 and 2.4932 respectively. It
would be interesting to see if this difference is also reflected in the

55

CHAPTER 6. DETECTING CHANGE IN BEHAVIOUR

histogram profiles of these users. Figure 6.4 shows the histogram of their
ratings in both datasets. It clearly shows that users 1028463 and 122197
had a significant change in behaviour. But user 825353 did not change
behaviour, so it is surprising that he appears as an outlier. Either the
difference measure that we used is flawed (perhaps movie features are not
constant) or it has captured a change in behaviour that is not visible from
the histograms.

Figure 6.4: Histograms on both dataset for the users with largest difference
in predictions from figure 6.3.

6.3 Further reading

This chapter is only a short introduction into detecting change in user
behaviour. Burge and Shawe-Taylor (1997) detect fraud in cellular phone
usage by maintaining a short term and long term profile of each user. Each
of these profiles is a probability distribution and they are compared with
the Hellinger distance (which is closely related to the Bhattacharyya

56

CHAPTER 6. DETECTING CHANGE IN BEHAVIOUR

distance of section 3.2.2) to detect change in calling behaviour. Yamanashi
et al. (2000) add some improvements to this approach, resulting in their
SMARTSIFTER algorithm.

The paper by Cahill et al. (2004) extends the work of Chen et al. (2000)
and uses a scoring function to flag a transaction as suspicious. Other
interesting papers are by Lane and Brodley (1998), Fawcett and Provost
(1999) and Song et al. (2007).

57

58

Chapter 7

Conclusions and
recommendations

7.1 Conclusions

We started this thesis in chapter 3 with an overview of user profiling. We
defined the concept of a ‘user profile’, showed some examples of possible
elements of such a profile and discussed probability density functions as a
way of modelling user behaviour. In section 3.1.5, Simon Funk’s idea was
explained as an example of how creativity and domain knowledge can play
a large role in the construction of a user profile. We then investigated ways
to compare profiles, with special attention for methods that quantify the
difference between two p.d.f.’s.

The next chapter provided details on the main methods used for detecting
outliers. We discussed techniques based on statistical ideas and techniques
based on distance measures. The various techniques were applied to the
Netflix dataset and the results were compared. We concluded the chapter
by remarking that it is important to carefully pre-process data and/or
select the appropriate distance measure.

In chapter 5 we turned our attention to dimensionality reduction
techniques. We applied five techniques to the Netflix data: Principal
Component Analysis, Multidimensional Scaling, AutoEncoders, Locally
Linear Embedding and t-Stochastic Neighbourhood Embedding. We
compared outliers in high dimensional and low dimensional space and
compared the results. We discovered that outliers detected in the original,
high dimensional space, are usually no longer outliers after reducing the
dimensionality of the data. So by applying dimensionality reduction
techniques some important features of outliers can be lost, making them
‘non-outliers’ in the low dimensional space. This leads us to conclude that

59

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

dimensionality reduction techniques have, in the context of outlier
detection, a limited applicability and should be used with caution.

The last chapter showed examples of how to detect change in a user
profile. For this we used the two types of profile that were in use during
most of the thesis: the histogram profile of the ratings of a user and Funk’s
user profile. Detecting change in the histograms was done with some of the
statistical techniques from this thesis, while detecting change in Funk’s
user profiles was achieved by applying a custom similarity measure.

At the beginning of this thesis we stated that we wanted to investigate
techniques for user profiling and outlier detection and to apply these to
detect changes in user behaviour. This is what we have successfully done in
the previous chapters. Overall we can conclude that no combination of
techniques for detecting change in user behaviour can be called ‘the best’.
The choice is very much influenced by domain knowledge and creativity.

We assembled some of the techniques we used in a toolbox for future use
with the Fraud Detection Expertise Centre. See Appendix B for more
information.

7.2 Recommendations

There are many other topics worth exploring. Most of the chapters in this
paper contain a section with references to papers with additional
information. A topic that is worth emphasizing again, is the relation to
automated fraud detection systems. The basic setup of such a system
would be as follows:

1. Transaction arrives.

2. (a) Existing user? Check the ‘likelihood’ of the transaction being
fraudulent by comparing the transaction to the current profile.
Raise a warning if the transaction appears to be fraudulent.

(b) New user? Initialise the profile using the first transaction
and/or some sort of global profile.

3. Update the profile using the new transaction.

There are some difficulties in this process:

• Initialisation of a user’s profile, the so-called new user problem or
cold start problem, is quite important.

• A profile needs to be updated from a single transaction.

60

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

• The profiles must be small enough to fit into memory (for real-time
fraud detection), yet big enough to accurately describe behaviour of
a user.

Some research into such systems has already been done in the context of
intrusion detection and detecting fraud in cellular phone usage (see the
references in sections 6.3 and 3.5), but most papers focus on one specific
domain. This topic would be an excellent subject for another paper or
thesis and an implementation of the system described above would be of
great use in practical situations.

61

62

Appendix A

Visualising good and bad
movies

In section 5.1 we introduced Principal Component Analysis and
investigated whether it preserved outliers. We can use this technique for
visualisation purposes as well. If we project the full dataset onto the first
two principal components, then we get a two dimensional representation.
This representation captures the largest part of the variance among all
other two dimensional representations.

As an illustration, we can apply PCA to the normalized histogram profiles
of the Netflix movies. Recall from section 3.1.2 that the histogram profile
of a user is a vector of 5 numbers. These numbers reflect how often a user
has given a rating of 1, 2, 3, 4 or 5 respectively. The normalized histogram
contains the same information, but there the counts in the histogram are
normalized to have a total area of 1. An example of an unnormalized
histogram profile (of user 2439493) is shown in figure 2.2 in section 2.4.1.
The normalized histogram of user 42 is shown in figure 3.1 in section 3.1.2.

Histogram profiles can also be calculated for the movies in the dataset. If
we use the first two principle components to project the 5 dimensional
profiles onto 2 dimensional space, then we can create a visualisation of the
movies. Figure A.1 shows the result of this, as well as the good and bad
movies from tables 2.1 and 2.3 respectively. The bad movies are the blue
circles on the left side of the plot and the good moves are red squares on
the right side of the plot.

Note that the good and bad movies are somewhat grouped together. We
can explain this by inspecting the first two principal components, shown in
Table A.1.

63

APPENDIX A. VISUALISING GOOD AND BAD MOVIES

First Second

-0.3729 0.5106
-0.4565 0.0988
-0.2512 -0.6624
0.4870 -0.3539
0.5935 0.4068

Table A.1: First two principal components of histograms of movies.

We see (from the first principal component) that movies to the right side
of the plot will have most ratings in categories 4 and 5 and few ratings in
1, 2, and 3. Movies to the left of the plot have the opposite characteristics.
Similarly (from the second principal component), movies to the top of the
picture will have very few ratings in categories 3 and 4 and movies to the
bottom very few in 1 and 5. Hence, good movies will be on the top-right
and bad movies will be on the left (about half way in height).

64

APPENDIX A. VISUALISING GOOD AND BAD MOVIES

Figure A.1: Visualisation of Netflix movies, with good movies from table 2.1
as red squares (on the right side of the plot) and the bad movies from table
2.3 as blue circles (on the left side of the plot).

65

66

Appendix B

Matlab: odToolbox

B.1 Available scripts

We created a toolbox that can be used to experiment with the outlier
detection techniques from chapter 4. It contains the following
functionalities:

• Finding outliers per dimension (section 4.1.1).

• Finding outliers with Iteratively Reweighted Least Squares (section
4.1.2).

• Finding outliers with Peeling (section 4.2.1).

• Finding outliers with Local Reconstruction Weights (section 4.2.4).

For the experiments in section 6.1 we implemented a number of distance
measures:

• The Kullback-Leibler divergence (section 3.2.2).

• The Bhattacharryya distance (section 3.2.2).

• The χ2 statistic (section 3.2.2).

The toolbox also contains some methods that are useful for visualisation:

• visualizeData.m: Creates a 2D scatter plot of clustered data, with
a different colour and marker for each cluster. It can also plot the
convex hull of the clusters.

• javaScatter.m: Starts a Java interface with a scatter plot of
clustered data, with a different colour and marker for each cluster.
Accepts labels to be shown when hovering the mouse over a data
point.

67

APPENDIX B. MATLAB: ODTOOLBOX

• javaNeighbourPlot.m: Another Java scatter plot tool, useful for
visualizing the location of high-dimensional neighbours in a 2D plot.

B.2 Demo script

The Matlab script below shows an example of how the toolbox can be used
to find outliers in a dataset with Peeling (using Mahalanobis distance) and
plot the results. The resulting plot is shows in figure B.1.

%clean up

clear all;

close all;

%init

seed = 3141592;

randn(’state’, seed);

rand(’state’, seed);

%data

nData = 1000;

mu = [0 0];

sigma = [[10 0]; [0 1]];

data = mvnrnd(mu, sigma, nData);

%get outliers

nOutliers = 15;

useMahalanobis = 1;

[outlierIdxs volumes] = getPeeledOutliers(data, nOutliers, useMahalanobis);

%plot results

clusterNames = strvcat({’Data’, ’Outliers’});

clusters = zeros(nData, 1);

clusters(outlierIdxs) = 1;

pointLabels = [repmat([’Point ’], nData,1) num2str((1:nData)’)];

javaScatter(data(:,1), data(:,2), clusters, clusterNames, ...

pointLabels, ’Outliers in data from a 2D Gaussian’);

68

APPENDIX B. MATLAB: ODTOOLBOX

Figure B.1: Outliers in an artificial dataset, found and plotted with the
odToolbox.

69

70

Bibliography

1. Agyemang, M., K. Barker, and R. Alhajj (2006) “A comprehensive
survey of numeric and symbolic outlier mining techniques,” Intell.
Data Anal., Vol. 10, No. 6, pp. 521–538.

2. Bell, R. and Y. Koren (2007a) “Improved Neighborhood-based
Collaborative Filtering,” Proceedings of KDD Cup and Workshop.

3. Bell, R. and Y. Koren (2007b) “Scalable Collaborative Filtering
with Jointly Derived Neighborhood Interpolation Weights,” in
ICDM ’07: Proceedings of the 2007 Seventh IEEE International
Conference on Data Mining, pp. 43–52, Washington, DC, USA:
IEEE Computer Society.

4. Bennett, J. and S. Lanning (2007) “The Netflix Prize,” Proceedings
of KDD Cup and Workshop.

5. Berkhin, P. (2006) “Survey of Clustering Data Mining
Techniques,”Technical report, Accrue Software, Inc.

6. Bishop, C. (2007) Pattern Recognition and Machine Learning
(Information Science and Statistics): Springer, 1st edition.

7. Bolton, R., J. Richard, and D.Hand (2002) “Statistical Fraud
Detection: A Review,” Statistical Science, Vol. 17, No. 3, pp.
235–249.

8. Burge, P. and J. Shawe-Taylor (1997) “Detecting Cellular Fraud
Using Adaptive Prototypes.,” AAAI Technical Report WS-97-07.

9. Cadez, I., P. Smyth, and H. Mannila (2001) “Probabilistic modeling
of transaction data with applications to profiling, visualization, and
prediction,” in KDD ’01: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 37–46, New York, NY, USA: ACM.

10. Cahill, M., D. Lambert, J. Pinheiro, and D. Sun (2004) “Detecting
fraud in the real world,” Computing Reviews, Vol. 45, No. 7, p. 447.

71

BIBLIOGRAPHY

11. Chandola, V., A. Banerjee, and V. Kumar (2009) “Anomaly
detection: A survey,” ACM Comput. Surv., Vol. 41, No. 3, pp. 1–58.

12. Chen, F., D. Lambert, J. Pinheiro, and D. Sun (2000) “Reducing
transaction databases, without lagging behind the data or losing
information,”Technical report, Bell Labs, Lucent Technologies.

13. Cortes, C. and D. Pregibon (2001) “Signature-Based Methods for
Data Streams,” Data Min. Knowl. Discov., Vol. 5, No. 3, pp.
167–182.

14. Dempster, A., N. Laird, and D. Rubin (1977) “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological), Vol. 39, No. 1, pp.
1–38.

15. DeSetto, L. and J. DeSetto (2006) “C++ implementation of Simon
Funk’s approach to The Netflix Prize by Timely Development.”
http://www.timelydevelopment.com/demos/NetflixPrize.aspx.

16. Duda, R., P. Hart, and D. Stork (2000) Pattern Classification (2nd
Edition): Wiley-Interscience, 2nd edition.

17. Fawcett, Tom and Foster Provost (1999) “Activity Monitoring:
Noticing interesting changes in behavior,” in In Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 53–62.

18. Ghodsi, A. (2006a) “Lecture notes of lecture 9 of the course ”Data
Visualization” (STAT 442),”Technical report, University of
Waterloo.

19. Ghodsi, A. (2006b) “Lecture notes of lectures 10-11 of the course
”Data Visualization” (STAT 442),”Technical report, University of
Waterloo.

20. Hinton, G. and S. Roweis (2002) “Stochastic Neighbor Embedding,”
in Advances in Neural Information Processing Systems 15, pp.
833–840: MIT Press.

21. Hinton, G. and R. Salakhutdinov (2006) “Reducing the
Dimensionality of Data with Neural Networks,” Science, Vol. 313,
No. 5786, pp. 504–507.

22. Hodge, V. and J. Austin (2004) “A Survey of Outlier Detection
Methodologies,” Artif. Intell. Rev., Vol. 22, No. 2, pp. 85–126.

23. Jain, A. (2010) “Data clustering: 50 years beyond K-means,”
Pattern Recogn. Lett., Vol. 31, No. 8, pp. 651–666.

72

BIBLIOGRAPHY

24. John, G. and P. Langley (1995) “Estimating Continuous
Distributions in Bayesian Classifiers,”, pp. 338–345.

25. Johnson, R. and D. Wichern (2002) Applied Multivariate Statistical
Analysis: Prentice Hall.

26. Lane, T. and C. Brodley (1998) “Approaches to Online Learning
and Concept Drift for User Identification in Computer Security.”

27. Lattin, J., Carroll J, and P. Green (2003) Analyzing Multivariate
Data: Thomson Learning.

28. Li, J., K. Huang, J. Jin, and J. Sh (2007) “A survey on statistical
methods for health care fraud detection,” Health Care Management
Science, Vol. 11, pp. 275–287.

29. Lowd, D. and P. Domingos (2005) “Naive Bayes models for
probability estimation,” in ICML ’05: Proceedings of the 22nd
international conference on Machine learning, pp. 529–536, New
York, NY, USA: ACM.

30. Markou, M. and S. Singh (2003a) “Novelty detection: a review–part
1: statistical approaches,” Signal Processing, Vol. 83, No. 12, pp.
2481 – 2497.

31. Markou, M. and S. Singh (2003b) “Novelty detection: a review–part
2:: neural network based approaches,” Signal Processing, Vol. 83,
No. 12, pp. 2499 – 2521.

32. Mobasher, B., R. Burke, R. Bhaumik, and C. Williams (2007)
“Toward trustworthy recommender systems: An analysis of attack
models and algorithm robustness,” ACM Trans. Internet Technol.,
Vol. 7, No. 4, p. 23.

33. Narayanan, A. and V. Shmatikov (2006) “How To Break Anonymity
of the Netflix Prize Dataset,” CoRR, Vol. abs/cs/0610105.

34. Paterek, A. (2007) “Improving regularized singular value
decomposition for collaborative filtering,” Proceedings of KDD Cup
and Workshop.

35. Peyr, G. (2010) “Locally Linear Embedding.” http://tiny.cc/ac5vkx.

36. Phua, C., V. Lee, K. Smith, and R. Gayle (2005) “A Comprehensive
Survey of Data Mining-based Fraud Detection Research,”Technical
report, Monash University.

37. Rojas, R. (1996) Neural Networks; A Systematic Introduction:
Springer.

73

BIBLIOGRAPHY

38. Roweis, S. and L Saul (2000) “Nonlinear Dimensionality Reduction
by Locally Linear Embedding,” Science, Vol. 290, pp. 2323–2326.

39. Russel, S. and P. Norvig (2002) Artificial Intelligence: A Modern
Approach: Prentice Hall.

40. Sill, J., G. Takács, L. Mackey, and D. Lin (2009) “Feature-Weighted
Linear Stacking,” CoRR, Vol. abs/0911.0460.

41. Song, X., M. Wu, C. Jermaine, and S. Ranka (2007) “Statistical
change detection for multi-dimensional data,” in KDD ’07:
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 667–676, New York, NY,
USA: ACM.

42. Steiglitz, K. (2009) Computing for the Physical & Social Sciences,
Princeton University. Lecture notes for course COS 323.

43. Sudjianto, A., S. Nair, and M. Yuan (2010) “Statistical Methods for
Fighting Financial Crimes,” Technometrics, Vol. 25, pp. 5–19.

44. Takacs, G., I. Pilaszy, B. Nemeth, and D. Tikk (2007) “On the
Gravity Recommendation System.”

45. UKCards (2010) “Fraud, The Facts 2010,”Technical report,
UKCards Association & Financial Fraud Action.

46. van der Maaten, L. (2009) “Dimensionality Reduction Methods.”
http://tiny.cc/fznze.

47. van der Maaten, L. and G. Hinton (2008) “Visualizing Data using
t-SNE,” Journal of Machine Learning Research, Vol. 9, pp.
2579–2605.

48. Williams, C., B. Mobasher, and R. Burke (2007) “Defending
recommender systems: detection of profile injection attacks,”
Service Oriented Computing and Applications, Vol. 1, pp. 157–170.
10.1007/s11761-007-0013-0.

49. Witten, E. and E. Frank (2005) Data Mining: Practical Machine
Learning Tools and Techniques: Morgan Kaufmann, pp.525.

50. Yamanashi, K., J. Takeuchi, and G. Williams (2000) “On-line
Unsupervised Outlier Dectection Using Finite Mixtures with
Discounting Learning Algorithms.”

51. Yoon, S. (2003) “Singular Value Decomposition & Application.”

74

BIBLIOGRAPHY

52. Zhang, Yang, N. Meratnia, and P.J.M. Havinga (2007) “A taxonomy
framework for unsupervised outlier detection techniques for
multi-type data sets.”

75

