
1

Value Function Discovery in Markov Decision
Processes with Evolutionary Algorithms

Martijn Onderwater, Sandjai Bhulai, and Rob van der Mei

Abstract—In this paper, we introduce a novel method for
the discovery of value functions for Markov Decision Processes
(MDPs). This method, which we call Value Function Discovery
(VFD), is based on ideas from the Evolutionary Algorithm field.
VFD’s key feature is that it discovers descriptions of value
functions that are algebraic in nature. This feature is unique,
because the descriptions include the model parameters of the
MDP. The algebraic expression of the value function discovered by
VFD can be used in several scenarios, e.g., conversion to a policy
(with one-step policy improvement) or control of systems with
time-varying parameters. The work in this paper is a first step
towards exploring potential usage scenarios of discovered value
functions. We give a detailed description of VFD and illustrate its
application on an example MDP. For this MDP we let VFD discover
an algebraic description of a value function that closely resembles
the optimal value function. The discovered value function is
then used to obtain a policy, which we compare numerically
to the optimal policy of the MDP. The resulting policy shows
near-optimal performance on a wide range of model parameters.
Finally, we identify and discuss future application scenarios of
discovered value functions.

Index Terms—Markov Decision Processes, Evolutionary Algo-
rithms, Value Function, Genetic Programming.

I. INTRODUCTION

MARKOV Decision Processes (MDPs) form a popular
modelling framework for scenarios involving sequential

decision making under uncertainty. It has been applied to a
wide range of stochastic control problems, such as inventory
management, telephone call admission in a call center, routing
in telecommunication networks, and financial portfolio man-
agement.

Once a scenario is modelled with an MDP, various tech-
niques are available to, e.g., obtain optimal policies for
decision making. These techniques fall into two categories,
namely numeric and algebraic techniques. In the former
category, the most well-known methods are value iteration,
policy evaluation, and policy iteration [1]. Value iteration is
an iterative technique for finding an optimal control policy and
the corresponding costs. With policy evaluation one can find
the costs of a given policy, and policy iteration improves and
evaluates policies iteratively.

This work is part of the project Realisation of Reliable and Secure Resi-
dential Sensor Platforms of the Dutch program IOP Generieke Communicatie,
number IGC1020, supported by the Subsidieregeling Sterktes in Innovatie.

Martijn Onderwater and Rob van der Mei are at the Center for Mathematics
and Computer Science (CWI), Science Park 123, 1098 XG Amsterdam, The
Netherlands. E-mail: {m.onderwater,r.d.van.der.mei}@cwi.nl.

Sandjai Bhulai, and the other two authors, are at VU University Amster-
dam, Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam, The
Netherlands. E-mail: s.bhulai@vu.nl.

The aforementioned techniques are numeric in nature, so
when, e.g., the model parameters change they have to be
reapplied to the updated scenario. Ideally, one would like to
solve an MDP algebraically and obtain the optimal policy (with
the model parameters included). This approach is, however,
often not feasible due to the complexities of the model.
In those cases, algebraic techniques might be used to show
structural properties of the value function, which in turn give
information about the structure of the optimal policy. For
instance, a convex value function might imply that the optimal
policy is a switching curve (see [2] for an example).

If the optimal policy cannot be obtained algebraically, a
near-optimal policy is often sufficient for practical purposes. In
this context, a technique called one-step policy improvement,
introduced in [3], can be applied. It starts with a policy for
which the MDP can be solved algebraically, yielding the corre-
sponding value function. Then, by applying one step of policy
iteration algebraically, this results in an improved policy. Since
policy iteration typically makes the largest improvements in
the first steps (see [4]), this improved policy is often near-
optimal.

In this paper, we describe a novel method (dubbed VFD,
for value function discovery) that is aimed at obtaining an
algebraic description of a value function. VFD is based on
a numeric technique from the Evolutionary Algorithm (EA)
family known as Genetic Programming (GP). One of the stan-
dard applications of GP is discovering algebraic descriptions of
functions based on samples of this function at various points.
To be precise, suppose a function V (x) is unknown, but that
we do have samples V (si) at various points si. Applying GP
allows the discovery of an approximate algebraic expression
for V (x) (denoted by Ṽ (x)) such that V (si) ≈ Ṽ (si) for all
sample points (si, V (si)). VFD applies GP to sample points
of the optimal value function of an MDP, thereby allowing
the discovery of an algebraic description of the optimal value
function.

The aim of the current paper is to introduce the concept of
value function discovery using GP, and to illustrate its potential
with a simple use case. For this use case, we convert the value
function discovered by VFD to a policy and show that it has
near-optimal performance. Then, we discuss other scenarios
where we expect discovered value functions to be of use.

In the remainder of this paper we describe VFD and illustrate
it by applying VFD to an example MDP. We start with a review
of related work in Section II, and an introduction to GP in Sec-
tion III. Then, we continue with a detailed description of VFD
in Section IV and of the example MDP in Section V. Numerical
results are presented in Section VI, followed by a discussion

2168–2216 c©2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

2

in Section VII and concluding remarks in Section VIII.

II. RELATED WORK

VFD is based on GP, details about which can be found in the
books [5], [6], and Section III contains a short description as
well. Other members of the EA family are described in various
textbooks, such as [5] and [7]. An introduction to MDPs is
given in, e.g., books [4] and [8].

The literature combining EAs and MDPs mostly uses EAs
to learn policies, whereas VFD learns value functions. In [9]
the authors introduce evolutionary policy iteration, where the
policy improvement step is integrated with an EA to itera-
tively obtain better policies. This procedure is shown to have
monotone convergence for finite action spaces. The authors
of [10] enhance the work in [9] by generating policies in the
population via sub-MDPs, thereby speeding up convergence.
From an application perspective, [11] provides an example
of how EAs and MDPs can be used in a practical scenario.
[12] compares an EA to policy iteration, and provides a useful
reminder that policy iteration typically converges quickly and
thus often outperforms an EA-approach.

Closest to our research is [13] by Lin et al., where the
authors construct a piecewise linear approximation of the value
function. In this approach, the linear elements are learned
using a Genetic Algorithm. Like VFD, Lin’s approach results
in an approximation of the value function. However, the
value function discovered by VFD is a closed-form expression,
whereas [13] finds a piecewise linear approximation. Having
a closed-form expression is preferable when, e.g., studying
the structure of the MDP using the discovered value function.
Also, [13] focuses on convex value functions, and VFD does
not make any assumptions about the structure of the value
function. Another difference is the type of EA that is used: [13]
employs a Genetic Algorithm, whilst VFD is based on a GP.
In particular, [13] does not use the tree-based representation
inherent to GP. Finally, [13] does not allow for the placement
of model parameters in the approximate value function.

A paper that does use GP in an MDP-context is [14]. The
authors loosely explore the combination of GP and MDPs on
an example of a war game and show that it performs well
compared to a pure MDP-based technique. Their approach
differs from the one described in this paper, because they use
GP to learn policies and not value functions, as VFD does.

Summarizing, the distinguishing feature of VFD is its focus
on discovering value functions. Although existing methods in
literature choose to learn policies, learning value functions has
significant advantages as well. In particular, VFD has the
following benefits:
• VFD applied to optimal value functions yields policies

with near-optimal performance.
• For MDPs that allow for an explicit closed-form expres-

sion of the optimal value function, VFD can find this
optimal value function with arbitrary precision. Thus, it
can also find the optimal policy for such MDPs.

• VFD produces an algebraic expression of a policy that
includes the parameters of the MDP. Consequently, this
policy is still applicable if the parameters of the model

change in value. This allows for dynamic control in time-
varying systems, without making the underlying model
time-dependent.

• Value functions discovered by VFD can help gain an un-
derstanding of the structure of the optimal value function,
policy, and model.

• Alternative techniques for analyzing MDPs often require
knowledge of structural properties of the value function
(e.g., gradient-based method such as local search). These
properties can be discovered by VFD.

• For many MDPs a near-optimal policy does not require
a very accurate fit of the optimal value function. Thus,
learning value functions can quickly result in good poli-
cies.

• VFD works with any MDP without requiring any changes
to the algorithm.

III. GENETIC PROGRAMMING

Since VFD is based on GP, we give a short description of
this technique in this section. GP maintains a population of
individuals and iteratively attempts to improve this population
over several generations. In each generation, the current popu-
lation generates new offspring by combining individuals. The
underlying idea of GP is that combining good individuals leads,
over time, to offspring that are better than their predecessors.

As mentioned in the introduction, one of the standard appli-
cations of GP is finding an algebraic description of a function
based on numeric approximations. Hence, the individuals in
the population used by GP have a specific representation that
allow them to be interpreted as functions. This representation
is discussed in more detail in Section III-A. The two operators
involved in generating offspring are described in Sections III-B
and III-C. Determining the quality of an individual is related
to VFD’s application of GP to MDPs, so we postpone it until
Section IV.

A. GP representation
GP uses trees to represent a function, and several of these

trees together form the population. Fig. 1a illustrates a tree
representation of the function V (x) = x(x+1)

2µ(1−ρ) . The operators
(/, ∗,+,−) from this expression are in the internal nodes of
the tree, whereas the leafs contain the variables (x), parameters
(ρ, µ), and constants (1, 2). In this paper we only use the oper-
ators (/, ∗,+,−) shown in the example, but the representation
is flexible and also allows for, e.g., exponents, square roots,
and logarithms. Finally, note that a representation of a tree is
not unique: the tree in Fig. 1b is also a valid representation
of V (x) = x(x+1)

2µ(1−ρ) . Unicity of the representation is, however,
not required by VFD. In fact, this feature is used by VFD to
include a preference for short trees.

B. GP recombination operator
GP uses the recombination operator to generate two new

offspring from two parents. The recombination operator takes
the following two steps:

3

/

*

+

x 1

x

*

2 *

−

1 ρ

µ

(a)

/

*

+

1 x

x

*

*

−

1 ρ

µ

2

(b)

Fig. 1. Two trees, each a representation of V (x) =
x(x+1)
2µ(1−ρ)

/

∗

+

x 1

x

∗

2 ∗

−

1 ρ

µ

(a) Tree 1 before recombination

+

∗

x /

1 µ

+

x 3.3

(b) Tree 2 before recombi-
nation

/

∗

+

x 1

x

∗

2 /

1 µ

(c) Tree 1 after recombination

+

∗

x ∗

−

1 ρ

µ

+

x 3.3

(d) Tree 2 after recombination

Fig. 2. The recombination operator illustrated on the two trees in Figs. 2a
and 2b. The encircled subtrees are exchanged, resulting in the trees in Figs. 2c
and 2d

/

∗

+

x 1

x

∗

2 ∗

−

1 ρ

µ

(a) Before mutation

/

∗

+

x 1

x

∗

2 x

(b) After mutation

Fig. 3. Mutation removes the subtree of the encircled node in Fig. 3a
(representing the term µ(1 − ρ)) and replaces it by a randomly generated
subtree. The new subtree contains, in this case, only the element x and is
encircled in Fig. 3b

1) Randomly select a node in each of the two trees.
2) Exchange the two subtrees.

The procedure is applied in Fig. 2 to the two trees in Figs. 2a

and 2b. The subtree with the encircled ∗ as root in Fig. 2a
is exchanged with the subtree with root / (also encircled),
resulting in the trees in Figs. 2c and 2d. This combines the
functions V (x) = x(x+1)

2µ(1−ρ) and V (x) = x 1
µ + x + 3.3 to

V (x) = x(x+1)

2 1
µ

and V (x) = x(1− ρ)µ+ x+ 3.3.

C. GP mutation operator

Applying the GP paradigm with only the recombination
operator would already result in the desired improvement
of the population over time. This improvement is, however,
limited by the information present in the population at the
start of the algorithm. The mutation operator discussed in
this section is used by GP to insert new information into
the population. The performance of GP is determined partly
by carefully balancing the application of the mutation and
recombination operators. Mutation of trees is done via the
following procedure:

1) Select one of the nodes of the tree uniformly at random.
2) Remove this node and the subtree attached to it.
3) Randomly generate a new subtree.
4) Insert this new subtree in the place of the old subtree.

Fig. 3 illustrates the procedure for the tree for V (x) = x(x+1)
2µ(1−ρ)

which we saw earlier, displayed again in Fig. 3a. The circled
node is selected for mutation and removed from the tree, to-
gether with its subtree. It is replaced by a randomly generated
subtree, in this case a simple tree with only one element
(x). The result is shown in Fig. 3b, with the newly added
tree encircled. Thus, mutation changes V (x) from x(x+1)

2µ(1−ρ) to
x(x+1)

2x .

IV. VALUE FUNCTION DISCOVERY

The previous section illustrated how GP learns an algebraic
description of a function. VFD relies on this technique to learn
the value function of an MDP. To describe the algorithm we
introduce some notation. The number of parameters of the
MDP is denoted by m, the optimal value function of the MDP
by V (·), and the VFD discovered function by Ṽ (·).

A. Preparing input from the MDP

Before VFD starts, it requires input from the MDP in the form
of sample point sets. Here, we describe how value iteration is
used to generate sample points, but, generally speaking, other
methods can be used as well. Sample points are generated
using the following steps:

1) Generate random values for each of the m parameters.
2) Run value iteration for the MDP.
3) Select several sample points that together capture the

shape of the value function. Each sample point is de-
noted by s, and the pairs (s, V (s)) together form the
sample point set Sq . The selection of sample points
typically depends on the MDP.

4) Save these sample points into a file.
5) Repeat steps 1–4 for several combinations of the m

parameters. Choosing the number of combinations is

4

again MDP-specific, but we denote it by Q for now. This
results in sample point sets Sq , with q ∈ [0, Q− 1].

The purpose of having multiple sets is to allow VFD to position
the parameters of the model. If we would only use one set, VFD
could use the value of a parameter instead of the parameter
itself and still discover a good value function. VFD would,
however, most likely perform poorly on a set generated with
different parameters.

Note that VFD starts by running value iteration on the
MDP, which yields an optimal policy. So why not use this
policy instead of running VFD? Well, the policy found by
value iteration is numeric in nature, whereas VFD produces an
algebraic policy. Consequently, the policy resulting from VFD
can be applied to parameters that are not used to generate the
sample points. This feature is illustrated later in this paper in
Section VI-C.

If it is not possible to run value iteration, for instance when
the MDP is too large, other techniques can be used to generate
sample points as well. An example of this is TD-learning (see
[8]), which provides numerical approximations of the value
function using simulations.

B. Overview

A pseudo code listing of VFD is shown in Algorithm 1, and
in the following paragraphs we describe the steps involved. We
start with a high-level description of Algorithm 1, and then
move on to a detailed description of the functions involved
(Algorithms 2 and 3). During these descriptions we encounter
the first of several parameters of VFD, which are listed in
Table I (together with assigned values that we use later in
an example MDP in Section V). Functions and parameters are
written in SMALLCAPS throughout the text, including trailing
brackets () for functions.

The algorithm starts on line 2 by loading the sample point
sets of the MDP from the files. These are used later to
determine the error of a tree. Next, the population is initialized
by filling it with MU randomly generated trees. Lines 4–
20 describe the steps taken by GP: first, LAMBDA children
are generated using mutation and recombination (lines 6–11).
Then, their error is calculated, they are added to the population,
and the population is sorted from smallest error to largest (lines
13-15). Survivor selection removes LAMBDA trees from the
population, leaving MU individuals (line 16). This procedure
is repeated until convergence (line 4).

Repeating the GP-like procedure described above eventually
leads to a population where most trees are the same or similar.
When this happens, the algorithm loses its ability to learn and
evolve, and the population is said to have lost diversity. VFD
deals with this by checking the level of diversity in each gener-
ation (with the ISPOPULATIONDIVERSE() function in line 17).
When this check indicates that too much diversity has been
lost, VFD reinitializes the population (line 18) with random
trees and restarts the search process. Upon convergence VFD
returns the discovered tree (line 21).

Algorithm 1 Value function discovery (VFD)
1: function VFD()
2: samplePointSets ← readSamplePointSets()
3: population ← initPopulation()
4: while not isConverged() do
5: repeat
6: if apply mutation then
7: children ← mutate(selectParent());
8: else
9: children ←recombine(selectParent(),

10: selectParent());
11: end if
12: until LAMBDA children generated
13: setError(children)
14: population ← population + children
15: sort(population)
16: survivorSelection()
17: if not isPopulationDiverse() then
18: initPopulation()
19: end if
20: end while
21: return population[0]
22: end function

C. Mutation, recombination, diversity, and convergence

The remaining paragraphs in this section describe the func-
tions used in Algorithm 1 in more detail. We start with the
MUTATE() function on line 1 of Algorithm 2. Mutation occurs
according to the GP paradigm, as described in Section III-C:
a random point in the tree is selected (line 2) and the subtree
at that point is replaced by a randomly generated subtree
(lines 3 and 4). Similarly, the recombination operator from
Section III-B is reflected in the RECOMBINE() method. Both
functions rely on a numbering of the nodes in a tree, which
VFD assigns using a root-left-right walk of the tree.

Every time that VFD generates one or two new individuals,
it decides whether to use mutation or recombination. This is
done probabilistically via the command line parameters AP-
PLYMUTATIONPROB: with probability APPLYMUTATIONPROB
VFD uses mutation, with probability 1-APPLYMUTATIONPROB
it uses recombination.

Checking for diversity is done in ISPOPULATIONDI-
VERSE(). It finds the error of the best tree (the first in the
population) and the worst tree (the last in the population)
at lines 26 and 27 respectively. Diversity is then calculated
via “error of worst tree - error of best tree”/ “error of best
tree” at line 28, which is then compared to a threshold DI-
VERSITY_THRESHOLD, another parameter of VFD. If diversity
drops below the threshold, diversity is considered to be lost
(line 29).

The next function is INITPOPULATION(), which periodi-
cally reinserts diversity into the population. The entire pop-
ulation is cleared (line 17) and reinitialized with randomly
generated trees (lines 18–20). The final steps in lines 21 and
22 calculate the error of each tree and sort the population (on
error). Readers familiar with GP most likely notice that VFD’s
treatment of diversity differs from common practice in GP.

5

We added a paragraph on the reasons for this difference in
Section VII-A.

The final function in Algorithm 2 is the ISCONVERGED()
function, which determines whether the current best individual
is good enough to allow stopping of VFD. If its error is lower
than the threshold value MIN_ERROR (specified by the user),
VFD stops.

D. Bloat in GP

Note that if recombination exchanges, for instance, the
root of the first tree with the leaf of the second tree, the
second tree can increase in depth and in number of elements.
Over time, this typically leads to very large and deep trees,
with negative effects on both speed and memory usage. This
problem, common to all GP instances, is called bloat and must
be dealt with by VFD. It does this by enforcing a maximum
on the number of elements in the tree, as specified by the
command line parameter MAXELEMENTSINTREE. This feature
is not shown in the MUTATE() and RECOMBINE() functions
in Algorithm 2 to keep the listing readable, but it is present in
the implementation of VFD. Additionally, the SORT() function,
which sorts a given set of trees by error in ascending order, has
a built-in preference for trees with a small number of elements.
Specifically, if two trees have equal error, the sort function puts
the tree with the fewest elements in front. This gives VFD a
slight inclination to discover short trees and prevent bloat.

E. Parent selection and survivor selection

We continue with the SELECTPARENT() function in Algo-
rithm 3, which is used by the mutation and recombination
operators to determine which parent(s) to act upon. Following
convention in the GP community, VFD relies on a strategy
called over-selection when selecting parents. In this strategy
the population is split into two groups, one containing ‘good’
parents and the other with ‘bad parents’. The two groups are
determined by taking the sorted population and defining the
first ‘GOODPCT’ percent individuals as good parents, and the
remaining trees as bad parents.

The parameter GOODPCT is automatically determined by
VFD from the size of the population MU. For this, VFD again
relies on GP-conventions and uses values ranging from 4 −
32%, as described in [5, Table 6.4]. Once the split point z1 is
known (line 2), a parent is selected from the good parents with
probability SELECTFROMGOODPROB and from the bad parents
otherwise. The selection is done in lines 4 and 6. Note that for
recombination the SELECTPARENT() function is called twice.

The SURVIVORSELECTION() function is used by VFD in
each generation after the LAMBDA children have been gener-
ated. Its purpose is to select MU survivors from among the
MU+LAMBDA individuals currently in the population. VFD
uses a greedy approach and simply removes the LAMBDA
individuals with the worst error from the population (line 12).

Algorithm 2 VFD continued
1: function MUTATE(parent)
2: z ← randint [0,numElements(parent)−1]
3: newSubtree ← generateRandomTree()
4: parent→setSubtree(z, newSubtree)
5: end function
6:
7: function RECOMBINE(parent1, parent2)
8: z1 ← randint [0,numElements(parent1)−1]
9: z2 ← randint [0,numElements(parent2)−1]

10: subTree1 ← parent1→getSubtree(z1)
11: subTree2 ← parent2→getSubtree(z2)
12: parent1→setSubtree(z1, subtree2)
13: parent2→setSubtree(z2, subtree1)
14: end function
15:
16: function INITPOPULATION()
17: population ← List()
18: for k ← 0, . . . ,MU−1 do
19: population[k] ← generateRandomTree()
20: end for
21: setError(population)
22: sort(population)
23: end function
24:
25: function ISPOPULATIONDIVERSE(population)
26: min ← population[0]→getError()
27: max ← population[MU−1]→getError()
28: div ← (max-min)/min
29: return div > DIVERSITY_THRESHOLD
30: end function
31:
32: function ISCONVERGED()
33: return population[0]→getError() < MIN_ERROR
34: end function

F. Goodness of fit (error)

So far we have not yet discussed how the error of a tree
is defined. This definition ties the GP approach of VFD to the
MDP setting of finding a good value function. The error of a
tree must be chosen in such a way that a low error corresponds
to a good fit of the function described by the tree on the sample
points obtained from the MDP. For VFD the error Eq on sample
point set q is calculated via

Eq = max
(s,V (s))∈Sq

|Ṽ (s)− V (s)|
V (s)

. (1)

Here, Ṽ (·) is the function discovered by VFD and V (·) the
optimal value function found by value iteration. The error
Eq is calculated in the function CALCERROR() in line 19 in
Algorithm 3. The error of a tree is then defined as

E = max
q∈[0,Q−1]

Eq,

i.e., the error of the tree is its worst error achieved on
all the sample point sets (see also steps 15-24 of function
SETERROR() in Algorithm 3).

6

Algorithm 3 VFD continued
1: function SELECTPARENT()
2: z1 ← floor(MU·GOODPCT)
3: if select from good then
4: z2 ← randint[0, z1 − 1]
5: else
6: z2 ← randint[z1, MU−1]
7: end if
8: return population[z2]
9: end function

10:
11: function SURVIVORSELECTION(population)
12: remove population[MU:MU+LAMBDA−1]
13: end function
14:
15: function SETERROR(trees)
16: for tree in trees do
17: maxError ← 0
18: for q ← 0, . . . , Q− 1 do
19: err ← calcError(samplePointSets[q], tree)
20: maxError ← max (err, maxError)
21: end for
22: tree→setError(maxError)
23: end for
24: end function

The error in Eq. (1) uses a relative measure of error by
dividing by V (s), contrary to, e.g., the mean squared error.
This ensures that sample points that naturally have large values
for V (s) do not dominate the search process of VFD. Also,
we use “max(s,V (s))∈Sq” rather than “mean(s,V (s))∈Sq” (i.e.,
MAPE). With MAPE, a large relative error for a small sample
point s can be mitigated by a small relative error of large
sample points. In the context of MDPs, however, small states
are usually visited more often, so we require a better fitting
value function in such states. At larger states we want to allow
larger errors. Therefore, using “max(s,V (s))∈Sq” in VFD is
preferable over MAPE.

V. EXAMPLE MDP

We illustrate the configuration, application, and output of
VFD on an example MDP. This MDP is suitable for demon-
strating VFD because

• No known expression for the optimal policy or value
function exists, so we have no prior knowledge that VFD
can capture the optimal value function.

• The system resembles a combination of an M/M/1 and
M/M/2 system, which helps us when generating sample
point sets and when choosing MAXELEMENTSINTREE.

• The system is relatively simple and easy to understand.
• The state space is small, which keeps run times of VFD

short.

In the following paragraphs we describe how VFD is con-
figured and, in doing so, we have to choose the parameters of
VFD. Table I contains all parameters available to VFD, and the
values we assign to them in this section. When choosing these

λ
µ1

µ2

Fig. 4. An M/M/2 system with control, where jobs (arriving with rate λ)
from the queue have to be assigned to either a fast server S1 (with service
rate µ1) or to a slow server S2 (with service rate µ2 < µ1)

values, the aim is to discover a value function for the system
with the objective to obtain a near-optimal policy. Thus, in
particular, we are not looking for the best parameter settings
(which we postpone to future research).

A. Model formulation

Fig. 4 shows a queue with Poisson arrivals (rate λ) and two
servers with exponential service rates µ1 and µ2 (µ1 > µ2).
The jobs in the queue have to be assigned non-preemptively to
either the fast server (S1) or the slower server (S2), assuming
one is available. This decision is taken after a job completion,
as well as after a job arrival. We model this scenario as an
MDP, with state (x, i) ∈ X = N×{0, 1}. Here, x denotes the
number of jobs in the queue and S1, and i the number of jobs
in S2. Our aim is to minimize the average number of jobs in
the system. From [15] we have the optimality equation

g + V (x, i) = x+ i

+ λW (x+ 1, i)

+ µ1W ((x− 1)+, i)

+ µ2W (x, 0),

(2)

with

W (x, 0) = min{V (x, 0);V (x− 1, 1)} if x > 0,

W (0, i) = V (0, i),

W (x, 1) = V (x, 1).

(3)

The function W (x, i) reflects the decision to be taken after
the occurrence of an event. In particular, if S2 is empty the
decision is between leaving the job in the queue (V (x, 0)) or
moving one job from the queue to S2 (V (x−1, 1)), as shown
in Eq. (3). If the queue and S1 are empty then moving a job
is not possible and the state of the system does not change
(W (0, i) = V (0, i)). Also, if the second server is busy the
state does not change (W (x, 1) = V (x, 1)). In Eq. (2), the
first line reflects the number of jobs in the system (x+ i). The
second, third, and fourth line correspond to the decision upon
a job arrival, a job completion at S1, and a job completion
at S2, respectively. Finally, the constant g is the time-average
costs of the system.

Note that this formulation allows preemptive behavior, since
W (1, 0) = min{V (1, 0);V (0, 1)} can result in moving a
job in service at S1 to S2. However, since µ1 > µ2 and
rates are exponential, such a move would result in a longer
expected service time for the job than when it is left at
S1. Hence, the optimal policy automatically enforces non-
preemptive behavior. Finally, in Eq. (2) and (3) we assume

7

TABLE I
THE PARAMETERS AVAILABLE TO VFD, THE VALUES ASSIGNED TO THEM
FOR THE EXAMPLE MDP IN SECTION V, AND THE VALUES ALLOWED BY

VFD

Parameters Name In example Allowed values
Command line
SEED 3151492 [0,MAXINT]
MU 1000 [1,MAXINT]
LAMBDA 500 [1,MAXINT]
MAXELEMENTSINTREE 125 [1,MAXINT]
MIN_ERROR 0.2 [0,1]
APPLYMUTATIONPROB 0.2 [0,1]
DIVERSITY_THRESHOLD 0.01 [0,MAXDOUBLE]

Parent selection
GOODPCT 0.32 [0,1]
SELECTFROMGOODPROB 0.8 [0,1]

Random tree creation
PROB_PLUS 0.3 [0,1]
PROB_MINUS 0.3 [0,1]
PROB_MULTIPLY 0.3 [0,1]
PROB_DIVIDE 0.1 [0,1]
PROB_PARAMETER 0.45 [0,1]
PROB_VARIABLE 0.45 [0,1]
PROB_CONSTANT 0.1 [0,1]
MAXCONSTANTVALUE 1 [0,MAXDOUBLE]

that the parameters are normalized such λ+ µ1 + µ2 = 1.

B. Generating sample point sets

The first step to running VFD is preparing the sample point
sets. The steps were described in Section IV-A and we repeat
them here for convenience:

1) Generate random values for each of the 3 parameters.
2) Run value iteration for the MDP.
3) Select sample points that together capture the shape of

the value function.
4) Save these sample points into a file.
5) Repeat steps 1–4 for Q pairs of the 3 parameters.

First we decide upon the number of sample point sets Q that
we intend to generate, and on the parameters used to generate
these sets. The purpose of having multiple sets is to allow
VFD to position the parameters of the model in the discovered
value function. If we would only use one set, VFD could use
the value of a parameter instead of the parameter itself and
still achieve a good fit on the single set. VFD would, however,
most likely perform poorly on a set generated with different
parameters.

For the current MDP, we make our choice for a worst-case
scenario where S2 is never used (i.e., a M/M/1 system) and
choose parameters for the sample point sets based on the load
ρ1 = λ/µ1 ∈ [0, 1]. In the region 0 ≤ ρ1 ≤ 0.4 the load on
the system is low, and possible wrong decisions in a policy
have little impact. Hence, we expect that an accurate value
function in that region is not required, and we cover it by

TABLE II
MODEL PARAMETERS PER SAMPLE POINT SET

Set ρ1 λ µ1 µ2

0 0.100 0.0814 0.8135 0.1051
1 0.400 0.2688 0.6719 0.0594
2 0.525 0.3158 0.6015 0.0827
3 0.650 0.3701 0.5693 0.0606
4 0.775 0.4028 0.5198 0.0774
5 0.900 0.4662 0.5180 0.0159
6 0.950 0.4804 0.5057 0.0139

just two sample point sets: one at ρ1 = 0.1 and another at
ρ1 = 0.4. Short experiments with VFD indicate that this is
indeed sufficient. Following similar reasoning, we choose two
sample point sets ‘close together’ at ρ1 = 0.9 and ρ1 = 0.95
to cover scenarios with a high load. The region 0.4 < ρ1 < 0.9
is then covered by Q− 4 sample sets distributed evenly over
the interval. We did short experiments with Q ranging from
5 until 9, and using Q = 7 yielded the best policies. The
resulting ρ1-values are {0.1, 0.4, 0.525, 0.65, 0.775, 0.9, 0.95}.
Then, we generate parameters µ1 and µ2 uniformly from [0, 1],
and set λ1 = ρ1µ1. In generating these values we also ensure
that µ1 > µ2 and that λ + µ1 + µ2 = 1. The parameters of
each set are shown in Table II.

Note that, generally speaking, using many sample point
sets (i.e., a large Q) ensures that VFD discovers a well-fitting
value function. On the other hand, the points in each sample
point set are used many times to evaluate trees, contributing
significantly to the computational complexity. Moreover, VFD
has to discover a value function that closely fits each sample
point set, so using many sets increases the time needed by
VFD to discover such a function. Consequently, choosing Q is
a trade-off between the goodness of fit of the discovered value
function, and the run time of VFD.

Now that the number of sets is chosen, the sample points in
each set can be found by value iteration. To run value iteration
we must decide on a boundary for the first dimension of the
state space X = N × {0, 1}. We use a value L to limit the
state space to X̂ = [0, L] × {0, 1}, where L is the smallest
value such that P(x > L) < 0.001 in the worst case (M/M/1)
scenario. For each sample set we then take 2×10 points, with
10 x-values evenly distributed over [0, 0.75·L] and i both 0 and
1. Here, (x, i) ∈ X̂ is a point in the state space. These sample
points easily capture the shape of the value function and avoid
boundary effects of value iteration (by using d0.75 ·Le instead
of L). If 0.75 · L < 10 then we take only d0.75 · Le points
instead of 10. Finally, we stop value iteration once the span
of two consecutive iterations is less than 10−6.

With this choice of sample points, the part of the state
space outside X̂ is not covered by sample points. Most likely,
VFD will not discover a value function that extrapolates well
outside X̂ . By choosing L such that P(x > L) < 0.001, we
ensure that it is unlikely that the system reaches states outside
X̂ , and thus we minimize the effects of VFD’s inability to
extrapolate. In general, when applying VFD to an MDP, the

8

user should keep in mind that VFD is good at interpolating
between sample points, and not at extrapolating. Hence, the
sample points should cover the area in the state space that the
user is most interested in. A similar argument holds for the
placement of the Q sample point sets in the parameter space.

C. Determining command line parameters
The next step towards running VFD is determining the

command line parameters, as listed in the first part of Table I.
The first of these, SEED, can be set to any desired integer
value, as its only purpose is to initialize the random number
generator. For the population size MU and the number of
children LAMBDA we follow current trends in GP and choose
them such that LAMBDA<MU. The authors of [5] suggest
populations with several thousands of individuals, but since
our MDP is fairly small we conservatively set MU to 1000 and
LAMBDA to 500.

For the parameter MAXELEMENTSINTREE we manually
count the number of elements needed for the M/M/1 value
function (13) and the M/M/2 value function (≈ 90), based on
the expressions in [16]. Then, we set MAXELEMENTSINTREE
to a value somewhat higher than 90 (125), and ran some short
experiments to see how large the resulting trees where. These
experiments suggest that using 125 elements is sufficient. In
general it is wise to set MAXELEMENTSINTREE to a slightly
bigger value than expected, since that gives VFD some more
freedom. Also, the SORT() function prefers smaller trees,
so this tends to counteract a possibly too large value of
MAXELEMENTSINTREE.

Next is MIN_ERROR, which influences the stopping criterion
of VFD. Large values for MIN_ERROR let VFD stop quickly
(but with a badly fitting tree), smaller values allow VFD to
search longer (with a better fitting tree). Note that for the
current MDP the performance of a discovered value function
depends on the decision min{Ṽ (x, 0); Ṽ (x − 1, 1)}. Even
if Ṽ (x, i) is not very accurate, the decision can still be
correct. Hence, we choose MIN_ERROR quite large and set
MIN_ERROR= 0.20.

The value of DIVERSITY_THRESHOLD is determined by
visually observing the progress made by VFD in terms of error
in several short experimental runs. VFD should have sufficient
time to discover good functions in between reinitialisations of
the population, but should stop as soon as error stops decreas-
ing significantly. This means that DIVERSITY_THRESHOLD
should not be too high. After some experiments we set it to
0.01, i.e., diversity is lost when the worst tree differs by at
most 1% from the best tree (in terms of error).

Finally, we discuss the parameter APPLYMUTATIONPROB,
which is used by VFD to decide between using the mutation or
recombination operators. The GP literature (see [5, Sec. 6.4]
and the references therein) suggests using a small mutation
probability in the order of 0.05. However, experiments on
the current MDP (see Section VI-E) indicate that setting
APPLYMUTATIONPROB to 0.2 yields better results.

D. Parent selection parameters
As described, parent selection utilizes a strategy called over-

selection which relies on parameters GOODPCT and SELECT-

FROMGOODPROB. For these we rely on conventions from
the GP community, as specified in [5]. Parameter GOODPCT
depends on the population size, which for our MDP results in
0.32, and SELECTFROMGOODPROB is typically set to 0.8.

E. Random tree generation parameters

Generating random trees depends on parameters for deter-
mining the type of operator and the contents of leafs (model
parameter, variable, or constant). Test runs indicate that the
operator / does not need to occur that often, so the values
in Table I reflect this (PROB_DIVIDE=0.1, whereas the others
are set to 0.3). Similar test runs suggest that constants are
needed less often, so PROB_CONSTANT is set to 0.1 and the
two others are set to 0.45. Parameter MAXCONSTANTVALUE
is set to 1, since by combining constants using the operators
/, ∗,+,− each value in R can be attained.

VI. NUMERICAL RESULTS

A. Sample points

Section V-B describes how the sample points for our MDP
example are generated. The values for the model parameters
per sample set are outlined in Table II. For each of the model
parameters in Table II we then run value iteration to find
the sample points. Fig. 5 shows the resulting sample points
for several of the sets. Note that the system with high load
(Fig. 5c) the optimal value function attains values in the order
of 104, whereas for lower loads in Figs. 5a and 5b these
values are significantly smaller. Also, in Fig. 5a the boundary
d0.75 · Le for value iteration is smaller than the number of
desired sample points (10), in which case only d0.75 · Le
sample points are retained. This results in 3 sample points
for both i = 0 and i = 1 (i.e., 6 sample points in total).

B. The discovered value function

Having specified all the input for VFD, it is ready to run.
The value function Ṽ (x, i) discovered by VFD is shown in
Eq. (4). In Fig. 6 it is plotted (dash-dotted line) together
with the sample points for the same sets as in Fig. 5. The
discovered Ṽ (x, i) resembles V (x, i) well. Additionally, the
figure contains two lines (dotted) above and below the sample
points that indicate how much Ṽ (x, i) is allowed to differ
from the sample points, as specified by the error criterion in
Eq. (1) and by the parameter MIN_ERROR. When running, VFD
continues looking for a value function until one is found that
lies completely between this upper and lower bound. Fig. 6
demonstrates that Ṽ (x, i) indeed lies between the specified
bounds. By modifying the parameter MIN_ERROR, the user
of VFD can control the distance between the upper and lower
bounds, and thus the accuracy of Ṽ (x, i). Also, observe that
the distance between the upper and lower bound increases as
x gets larger, as a consequence of our choice for a relative
error criterion (as discussed in Section IV-F).

Next, we convert Ṽ (x, i) to a (algebraic) policy using one-
step policy improvement. Observe that for states (x, 1) it is not

9

Ṽ (x, i) =
i

0.28µ2(2λµ2(i+ µ1)(2λ+ µ1)− i+ µ2)
(
(i+ λ)

(
λ2

µ1
+ µ2

)
+ i− µ1

)
+ µ2

+ x . . .

− λ
(
λ2 + 1

)
x

−λ
λ2

(
3.58iλ
µ1

+ 3.58λ2x+ x
)

µ2
+ x

+ λ2 − 3.58(λ+ µ1)− 3.58λx− µ1x− 2µ2 − x

 (4)

0 0.5 1 1.5 2
0

1

2

3

4

5

x

V
(x

,0
)

V(x,0) for ρ=0.1

Value iteration
Sample points

0 0.5 1 1.5 2
9

10

11

12

13

14
V(x,1) for ρ=0.1

x

V
(x

,1
)

(a) Set 0

0 2 4 6 8
0

20

40

60

80

100

120

x

V
(x

,0
)

V(x,0) for ρ=0.525

Value iteration
Sample points

0 2 4 6 8
0

50

100

V(x,1) for ρ=0.525

x

V
(x

,1
)

(b) Set 2

0 20 40 60 80 100
0

5

10

x 10
4

x

V
(x

,0
)

V(x,0) for ρ=0.95

Value iteration
Sample points

0 20 40 60 80 100
0

5

10

x 10
4 V(x,1) for ρ=0.95

x

V
(x

,1
)

(c) Set 6

Fig. 5. Sample points of sets 0, 2, and 6

0 0.5 1 1.5 2
0

1

2

3

4

5

x

V
(x

,0
)

V(x,0) for ρ=0.1

 Value iteration
Sample points
VFD function
Max error allowed

0 0.5 1 1.5 2
6

8

10

12

14

16

18
V(x,1) for ρ=0.1

x

V
(x

,1
)

(a) Set 0

0 2 4 6 8
0

50

100

x

V
(x

,0
)

V(x,0) for ρ=0.525

 Value iteration
Sample points
VFD function
Max error allowed

0 2 4 6 8
0

50

100

150
V(x,1) for ρ=0.525

x

V
(x

,1
)

(b) Set 2

0 20 40 60 80 100
0

5

10

15
x 10

4

x

V
(x

,0
)

V(x,0) for ρ=0.95

 Value iteration
Sample points
VFD function
Max error allowed

0 20 40 60 80 100
0

5

10

15
x 10

4 V(x,1) for ρ=0.95

x

V
(x

,1
)

(c) Set 6

Fig. 6. Ṽ (x, i) for sets 0, 2, and 6

10

TABLE III
POLICY DERIVED FROM THE VALUE FUNCTION IN EQ. (4) DISCOVERED

BY VFD. THE TABLE INDICATES FOR WHICH STATES (x, 0) A JOB SHOULD
BE ASSIGNED TO SERVER S2

Set ρ1 Policy
0 0.100 Use S2 if x > 25.5719
1 0.400 Use S2 if x > 10.2648
2 0.525 Use S2 if x > 5.9715
3 0.650 Use S2 if x > 6.4751
4 0.775 Use S2 if x > 4.6315
5 0.900 Use S2 if x > 15.5992
6 0.950 Use S2 if x > 17.4802

TABLE IV
TIME-AVERAGE COSTS g̃ FOR THE POLICY BASED ON THE VALUE
FUNCTION IN EQ. (4) DISCOVERED BY VFD. THESE COSTS ARE

COMPARED TO COSTS g OF THE OPTIMAL POLICY

Set ρ1 g g̃
0 0.100 0.1107 0.1107
1 0.400 0.6643 0.6643
2 0.525 1.0589 1.0665
3 0.650 1.7107 1.7368
4 0.775 2.4684 2.5085
5 0.900 7.3973 7.7279
6 0.950 12.8241 13.5369

possible to assign a job to server S2, so the policy is trivial in
these states. Therefore, we focus on states (x, 0). To obtain the
policy, we take the term min{V (x, 0);V (x−1, 1)} in Eq. (3)
and substitute Ṽ (x, i) for V (x, i). Evaluating the minimum
results in an action for each state (x, 0), i.e., server S2 is
used when Ṽ (x, 0) > Ṽ (x−1, 1). Unfortunately, the resulting
inequality is lengthy and challenging to interpret. Instead, we
simplify the inequality for parameters λ, µ1, µ2 of the sample
point sets in Table II, and show the policies in Table III. The
policies indicate for which states (x, 0) the second server S2

should be used. All policies are of threshold type, and the
same structure holds for the optimal policy (see [15] for a
proof).

For the policy derived from Ṽ (x, i) we can find the time-
average costs g̃ with policy evaluation for each parameter
combination from Table II. The results are in Table IV, and
show that the policy consistently yields good results for the
various model parameter values.

C. Performance on different model parameters

The time-average costs in Table IV are based on the model
parameters in Table II, which were given to VFD. To further
investigate the performance of VFD, we again compute the
time-average costs g̃ of the policy based on Ṽ (x, i), but now
for model parameters that VFD has not seen before. To this
end, we fix new values for ρ1 (the second column in Table V)
and generate new values for the model parameters λ, µ1, and
µ2 (columns 3− 5). Then, we rerun value iteration to get the

TABLE V
TIME-AVERAGE COSTS g̃ FOR THE POLICY BASED ON THE VALUE
FUNCTION DISCOVERED BY VFD, COMPARED TO COSTS g OF THE

OPTIMAL POLICY. THE MODEL PARAMETERS (λ, µ1, µ2) AND LOADS (ρ1)
ARE DIFFERENT FROM THE ONES VFD WAS GIVEN AS INPUT

Set ρ1 λ µ1 µ2 g g̃
0 0.010 0.0088 0.8832 0.1080 0.0101 0.0101
1 0.200 0.1533 0.7663 0.0805 0.2496 0.2496
2 0.300 0.2094 0.6981 0.0924 0.4270 0.4270
3 0.450 0.2848 0.6329 0.0823 0.8067 0.8100
4 0.600 0.3686 0.6143 0.0171 1.4930 1.4930
5 0.700 0.3823 0.5462 0.0715 1.9669 2.0080
6 0.825 0.4443 0.5385 0.0172 4.3761 4.4744
7 0.875 0.4567 0.5219 0.0215 5.7497 5.9840
8 0.925 0.4571 0.4942 0.0487 5.8536 6.0514

costs g of the optimal policy, and apply policy evaluation to
find the costs g̃ of the policy based on Ṽ (x, i) from Eq. (4).
The last two columns of Table V shows that g and g̃ are
consistently close and that VFD performs well on these new
model parameters. We repeated this experiment several times
for several values of the parameter SEED, and VFD continually
yielded similar good results.

D. Computational complexity

With the model parameter values from Table II and the
sample point sets from Fig. 5, VFD requires 2 minutes and
7 seconds to discover Ṽ (x, i) from Eq. (4). Since VFD relies
on several sources of randomness (controlled via command
line parameter SEED), we inspect whether this run time is
representative of VFD in general. To this end, we run VFD for
25 different values of SEED, record the run times, and compute
the median of these run times. This results in a median run
time of 2 minutes and 21 seconds, which corresponds well
with the previously observed run time.

For the MDP in this paper the run time is quite short, which
is mainly due to the small state space of the MDP in Eq. (2).
On MDPs with larger state spaces the run time will be longer,
but we feel that this is well worth the effort. Obtaining near-
optimal policies for large MDPs via mathematical procedures is
very challenging, time consuming, and does not always yield
results. VFD, however, is easy to set up and run.

E. Sensitivity analysis of APPLYMUTATIONPROB

For the experiments in this paper we use APPLYMUTA-
TIONPROB= 0.2, even though the GP literature suggest a
lower value of 0.05. To illustrate why we deviate from GP
conventions, we analyze the effect of changing APPLYMU-
TATIONPROB on VFD. Note that APPLYMUTATIONPROB only
affects the run time of VFD, but not the goodness of fit
of the discovered value function. The latter is controlled
with parameter MIN_ERROR, and with the sample point sets.
Therefore, we analyze the effect of APPLYMUTATIONPROB
on the run time of VFD. We vary APPLYMUTATIONPROB
from 0 to 0.8, as seen in the first and fourth column of

11

TABLE VI
MEDIAN AND STANDARD DEVIATION (σ) OF THE RUN TIME OF VFD OVER

25 RUNS, FOR SEVERAL DIFFERENT VALUES OF APPLYMUTATIONPROB.

value median σ value median σ
0 4.93 6.07 0.30 5.40 5.51

0.05 5.57 7.18 0.40 6.07 6.91
0.10 11.90 6.56 0.50 11.02 8.65
0.15 3.37 4.42 0.60 6.02 16.21
0.20 2.35 3.57 0.70 5.62 9.66
0.25 3.18 2.31 0.80 6.34 7.95

Table VI. Then, for each value of APPLYMUTATIONPROB we
run VFD 25 times and record the median run time (second
and fifth column) and the standard deviation σ (third and
sixth column). The lowest median run time is achieved for
APPLYMUTATIONPROB= 0.2, and the corresponding standard
deviation is low as well. Hence, APPLYMUTATIONPROB= 0.2
is the value we use in this paper.

F. VFD applied to M/M/1

In Section II we claimed that for MDPs that allow for an
explicit closed-form expression of the optimal value function,
VFD can find this optimal value function. To illustrate this,
we let VFD discover the value function of a M/M/1 queue.
Thereto, we set µ2 = 0, regenerate the sample point sets, and
run VFD with parameter MIN_ERROR set to 0.0001 (slightly
bigger than 0 to allow for small numerical inaccuracies in
value iteration). VFD discovers the function

Ṽ (x) =
x(λ+ µ+ x)

−2λ+ 2µ
,

which simplifies to

Ṽ (x) =
x(x+ 1)

2(µ− λ)
.

This is indeed the value function of a M/M/1 queue.

VII. DISCUSSION

A. Improvements to VFD

The paragraphs below contain several potential improve-
ments to VFD. In this paper we showed the value function
discovered by VFD in Eq. (4), but we did not analyze it
further. It can, however, provide useful insights. For instance,
Ṽ (x, i) in Eq. (4) contains the element λ/µ1, the load of
an M/M/1 system. It does, however, not contain λ

µ1+µ2
,

the load on an M/M/2 system. At the moment it is quite
difficult to interpret the discovered value function, because
the expression in Eq. (4) is somewhat long. We even expect
that it is acceptable to sacrifice some accuracy in return for
shorter trees.

VFD does not utilize any prior knowledge about the structure
of the value function in the population. However, it might
speed up the search process or result in better value functions
if this knowledge is included. For the MDP in this paper,
we could for instance add several elements of the M/M/1

and M/M/2 value function to the population: λ/µ1 (the
load of an M/M/1 system), λ/(µ1 + µ2) (the load of an
M/M/2 system), and x2 (both the M/M/1 and M/M/2
value functions are quadratic in x).

A modification of VFD might eliminate the need for sample
point sets before the start of the algorithm. If we make VFD
work directly with the MDP optimality equations and construct
a suitable error measure, then VFD does not need sample points
anymore.

The current version of VFD uses only operators /, ∗,+,−,
but the representation of a function in GP is flexible enough to
also allow for, e.g., exponents, square roots, logarithms, and
rounding. Additionally, we could add other genetic operators
besides mutation and recombination, such as dropping and
inserting nodes.

In Section V we determined values for the parameters of
VFD. We wanted to set the parameters of VFD to values that
yield good policies. In particular, we were not looking for
the best parameter settings. The current, basic, MDP does not
require too much consideration for the VFD parameters, but
for larger systems we expect the parameter values to be more
important. A potential improvement is to use a parameter
tuning tool such as Bonesa [17] to select good parameters,
or to learn parameters on the go with, e.g., a co-evolutionary
algorithm (see [18] for an example).

The current setup of VFD reinitializes the entire population
when diversity is lost, so it does not attempt to maintain
diversity of a population. Upon loss of diversity the search
is simply restarted elsewhere. With the basic MDP we used in
this paper, such a naive attitude towards diversity is sufficient
to get a good value function quickly. However, for MDPs
with larger state spaces, or MDPs that require a smaller error,
this approach will most likely not yield a sufficiently good
value function in a reasonable amount of time. Traditionally,
GP algorithms employ a diversity maintenance scheme, e.g.,
a temporary increase of APPLYMUTATIONPROB upon loss
of diversity. We expect that VFD will also need a diversity
maintenance strategy, as we continue our experiments with
VFD in the near future. For the current paper we decided not
to include such a scheme, because that would have resulted
in even more parameters for VFD. This would have clouded
our focus on the discovery of value functions in the context
of MDPs.

B. Applications of VFD

Recall that VFD yields an algebraic expression for a value
function, and consequently for a policy as well. As stated in the
introduction, this is particularly useful for large time-varying
systems that require a control policy, since there is no need
to make and analyze a time-dependent model. An example of
such a system is presented in [19].

VFD discovers a value function, which is then turned into a
policy. For the current MDP, however, another approach might
speed VFD up. In [15] the author proves that the optimal policy
is a switching curve, i.e., there exists a threshold T such that
only S1 is used for x ≤ T and both S1 and S2 are used
for x > T . We can thus apply VFD to sample points of this

12

threshold T and learn an expression for T in terms of the
model parameters. Note that this requires only one sample
point per set and thus significantly improves the run time of
VFD. Initial experiments suggest that this approach works well.

Applying VFD can also be convenient in other situations
than when searching for a value function. For instance, in
[20] the authors of the current paper apply one-step policy
improvement to an MDP, starting with a Bernoulli policy. This
policy includes a parameter α that must be determined after
policy improvement, ideally such that the time-average costs
g′(α) are minimized. An expression for g′(α) is, however,
not available so the minimization is done using a numerical
heuristic. VFD can be applied in this scenario to sample points
of g′(α) and thus help discover an expression for g′(α), which
can then be minimized with respect to α.

VIII. CONCLUSIONS

In this paper we introduced VFD, a novel method for discov-
ering algebraic descriptions of value functions of MDPs using a
GP approach. We started with a description of GP, in particular
of the representation used in GP, and of the mutation and
recombination operators. Then we gave a high-level overview
of the workings of VFD, followed by a more detailed treatment
of the algorithm. We applied VFD to a basic yet interesting
MDP, and let it discover a value function. To illustrate how a
discovered value function can be used, we obtained a policy
from it via one-step policy improvement. Numerical experi-
ments showed that this policy has near-optimal performance,
both for model parameters that VFD was given a priori, and for
new parameters. We identified several opportunities for future
research, containing both improvements to VFD and alternative
applications of the algorithm.

ACKNOWLEDGMENT

We thank SURFsara [21] for the support in using the
LISA Compute Cluster, and the reviewers for their in-depth
comments during the peer-review process.

REFERENCES

[1] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
1994.

[2] J. Walrand, An introduction to queueing networks. Prentice Hall
Englewood Cliffs, N.J, 1988.

[3] J. M. Norman, Heuristic procedures in dynamic programming. Manch-
ester University Press, 1972.

[4] H. Tijms, A First Course in Stochastic Models. Wiley, 2003.
[5] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.

Berlin Heidelberg New York: Springer, 2003.
[6] R. Poli and J. Koza, Genetic Programming. Springer, 2014.
[7] D. Simon, Evolutionary optimization algorithms. John Wiley & Sons,

2013.
[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.
[9] H. S. Chang, H. Lee, M. C. Fu, and S. I. Marcus, “Evolutionary policy

iteration for solving Markov decision processes,” IEEE Transactions on
Automatic Control, vol. 50, no. 11, pp. 1804–1808, 2005.

[10] J. Hu, M. C. Fu, V. R. Ramezani, and S. I. Marcus, “An evolutionary
random policy search algorithm for solving Markov decision processes,”
INFORMS Journal on Computing, vol. 19, no. 2, pp. 161–174, 2007.

[11] A. Yener and C. Rose, “Genetic algorithms applied to cellular call
admission: local policies,” IEEE Transactions on Vehicular Technology,
vol. 46, no. 1, pp. 72–79, 1997.

[12] D. Barash, “A genetic search in policy space for solving Markov
decision processes,” in AAAI Spring Symposium on Search Techniques
for Problem Solving under Uncertainty and Incomplete Information,
1999.

[13] Z. Lin, J. C. Bean, and C. C. White, “A hybrid genetic/optimization algo-
rithm for finite-horizon, partially observed Markov decision processes,”
INFORMS Journal on Computing, vol. 16, no. 1, pp. 27–38, 2004.

[14] C. Gearhart, “Genetic programming as policy search in Markov decision
processes,” Genetic Algorithms and Genetic Programming at Stanford,
pp. 61–67, 2003.

[15] G. Koole, “A simple proof of the optimality of a threshold policy in a
two-server queueing system,” Systems & Control Letters, vol. 26, no. 5,
pp. 301–303, 1995.

[16] S. Bhulai and G. Koole, “On the structure of value functions for
threshold policies in queueing models,” Journal of Applied Probability,
pp. 613–622, 2003.

[17] S. Smit and A. Eiben, “Multi-problem parameter tuning using
BONESA,” in Artificial Evolution, 2011, pp. 222–233.

[18] C. M. Fernandes, J. J. Merelo, and A. C. Rosa, “Controlling the
parameters of the particle swarm optimization with a self-organized
criticality model,” in Parallel Problem Solving from Nature-PPSN XII.
Springer, 2012, pp. 153–163.

[19] D. Roubos and S. Bhulai, “Approximate dynamic programming tech-
niques for the control of time-varying queuing systems applied to call
centers with abandonments and retrials,” Probab. Eng. Inf. Sci., vol. 24,
no. 1, pp. 27–45, Jan. 2010.

[20] M. Onderwater, S. Bhulai, and R. D. v. d. Mei, “On the control of a
queueing system with aging state information,” Stochastic Models (under
review), 2014.

[21] SURFsara, “http://www.surfsara.nl,” 2013.

http://www.surfsara.nl

